
JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 5 1 AUGUST 2004
Coupled reference interaction site model Õsimulation approach
for thermochemistry of solvation: Theory and prospects
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~Received 17 November 2003; accepted 20 April 2004!

We present a new methodology for computing solvation free energy, which is based upon the
reference interaction site model~RISM!/hypernetted chain~HNC! solvation free energy expression,
but which substitutes radial distribution functions taken from simulations for those calculated by
simultaneous solution of the RISM and HNC equations. Consequently, solvation free energy can be
obtained from a single molecular dynamics or Monte Carlo simulation. Here we describe in detail
the coupled RISM/simulation approach, and offer some error analysis. Finally we give the results of
its application to a set of small test molecules in aqueous solution. The success shown in some of
our results demonstrates that the coupled RISM/simulation approach is worth considering further as
a potentially useful tool in studies of solvated systems, such as aqueous molecular biosystems.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1760741#
ov
a
r

-
as

ty,
a
rg

es
g
el
a

n

c
b
to
t
te
u

at
e
th
a

dy
c

at
r t
e

er-

re-

to
ing
ve
nd
ic

n
hat

t a
gy
ns
C

lso
m-
e-

en-
om
ti-

ng

ion
a-
r-
ther,
in
, a
and
la-
ld
of

nal
I. INTRODUCTION

The reference interaction site model~RISM! integral
equation theory has received a large amount of interest
the past three decades as a means to calculate the solv
structure surrounding a solute molecule, as described by
dial distribution functions.1–4 Still more importantly, by em-
ploying the hypernetted chain~HNC! closure relation, an ex
pression has been derived for the solvation free energy
function of these solvent distributions.5–7 Solvation free en-
ergy constitutes an important, but difficult-to-find quanti
posing a challenge to computational chemists. This appro
provides an alternative to the more laborious free-ene
simulation methodology, and moreover one which, like th
simulations, depicts the solvent structure, thus presentin
advantage over the popular continuum solvation mod
which instead require that the solvent be described by
extensive set of parameters.8 However unlike free-energy
simulations, RISM calculations are relatively computatio
ally cheap.9–11

The determination of a solvation free-energy differen
by free-energy simulation requires that many simulations
run as one solvated molecule is gradually ‘‘mutated’’ in
another, with explicit modeling of all solute and solvent a
oms. A value between 0 and 1 of the coupling parame
which describes the fractional character of the first molec
at each point along the path and is denoted byl, is associ-
ated with each simulation. Free-energy differences associ
with the concomitant displacement of water molecules
fected during this transformation can be used to calculate
relative solvation free energies of the two molecules as
integral over the coupling parameter in either the thermo
namic integration or the free-energy perturbation approa
Reasonable, and sometimes quite accurate, relative solv
free energies can be determined by this method. Howeve
process is quite complex, thus making it rath

a!Author to whom correspondence should be addressed.
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impractical.8,11 On the other hand, the RISM/HNC formalism
allows the integration over the coupling parameter to be p
formed analytically by expressingdDm/dl as the exact dif-
ferential of a function that is independent ofl.6 In this way,
the complexity of a solvation free-energy calculation is
duced tremendously.

Although RISM appears to be a promising alternative
free-energy simulations, difficulties are encountered dur
its application. In the first place, it can be difficult to achie
convergence to a simultaneous solution of the RISM a
closure relations, especially for molecules with many atom
sites such as proteins.12 In addition, the accuracy of solvatio
free energies calculated from RISM can be somew
discouraging.13

With these problems in mind, we have proposed tha
simple alternative to the RISM/HNC solvation free-ener
methodology might be to find accurate solvent distributio
using a simulation, from these to solve the RISM and HN
equations for the direct correlation functions, which are a
needed in a RISM free-energy calculation, and lastly to co
bine these functions as input to the RISM solvation fre
energy expression. That is, radial distribution functions
tering the solvation free-energy expression would come fr
simulation results, and the direct correlation functions u
lized would be derived from these distributions by maki
use of the RISM and HNC equations.14

Other studies have been carried out mixing informat
obtained from RISM theory with that derived from simul
tions, but in a different framework and for a different pu
pose. These studies have utilized the RISM approach, ra
for its cost-efficient depiction of solvation structure with
simulations modeling a solute’s dynamics. For example
stochastic dynamics simulation was performed by Pettitt
co-workers in which RISM/calculated solute-solute corre
tion functions were compiled in a look-up table, which cou
be referenced to find solvent contributions to potentials
mean force that were combined with nonsolvated inter
7 © 2004 American Institute of Physics
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energy terms.15 Likewise both molecular dynamics~MD!
and Monte Carlo~MC! simulations have been used to e
plore the configuration spaces of peptides, in which solva
free energies calculated by RISM were summed with con
mational energies to obtain total free-energy profiles.12,16

However, in the approach we take here, RISM, instead
being used to supply the solvation structure, is taken adv
tage of for its simple expression for solvation free ener
while solvent distributions are taken from simulation traje
tories. Kast has explored some ideas similar to our own.17

Here we clarify the procedure used to carry out
coupled RISM/simulation solvation free-energy calculatio
focusing on solutes dissolved in water. In addition, we d
cuss the errors occurring as these calculations are perfor
We also present the results of applying coupled RISM/MC
a few small neutral test molecules.

II. METHODOLOGY

In our approach, a simulation is used to determine
solvation structure, described by radial distribution functio
around each solute site. This data is combined with inform
tion gained from the RISM and HNC equations to find t
solvation free energy within the RISM formalism. Besid
the radial distribution function,g, the second function
needed as input in the RISM formulation of solvation fr
energy is the direct correlation function,c. Becauseg is de-
termined from simulation results, we no longer need to ap
an iterative strategy to solve the RISM and HNC equatio
simultaneously. Instead both of these equations can be
ployed separately for the determination ofc.14

The RISM and HNC equations are given as

ĥ~k!5v̂~k!ĉ~k!v̂~k!1rv̂~k!ĉ~k!ĥ~k!, ~1!

gag~r !5exp@2buag~r !1hag~r !2cag~r !#, ~2!

whereh'g21 is the correlation function, the carets indica
spatial Fourier transforms, the boldface denotes matricev̂
is the intramolecular correlation function, andu is the inter-
molecular pair potential. More precisely, ifl ab denotes the
intramolecular separation between sitesa and b, then
v̂ab(k)5dab1(12dab)(sinklab /klab).

When the HNC equation is solved forc, the resulting
expression is

cag~r !52buag~r !1hag~r !2 ln@hag~r !11#. ~3!

Note, however, thatc cannot be determined by this equatio
at small distances whereg vanishes and thus the natur
logarithm in the above expression loses meaning.

Using the RISM equation,c can be expressed in terms
h as

ĉuv5@v̂u#21@ ĥuv#@v̂v1rvĥvv#21. ~4!

For larger , c is known to decay asr21; in particular,

ci j ~r !→2bui j
c ~r ! as r→`, ~5!

whereuC is the Coulomb potential given by

ui j
C~r !5

qiqj

r
,
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with qi denoting the charge on sitei. As a result of this slow
decay ofc, ĉ becomes unbounded ask→0, and thusc does
not lend itself well to numerical Fourier transformation. Th
difficulty was formerly encountered when iterative tec
niques for solving the RISM/HNC equations were extend
to polar molecules and ions. In the extended RISM appro
~XRISM! the long-range Coulomb asymptotics ofc are sepa-
rated out and ‘‘resummed,’’ using analytic Fourier transfo
mation, to yield their contribution toh.1,2 This process has
been referred to as renormalization. We make use of the
ticular renormalization scheme proposed by Hirataet al.,18 in
which c is expressed as the sum of long- and short-ra
components as

cuv5cuv
sr 1fuv , ~6!

wheref(r )52buC(r ).
Because, unlikec, the above function is divergent atr

50, it is convenient to make the modification

f~r !52buC~r !erfS 2r

t D , ~7!

wheret is a constant best selected from the range20.5 to
21.0; we used a value oft520.8.19

The resultant decomposition ofĥ is

ĥuv5ĝuv1v̂uĉuv
sr $v̂v1rvĥvv% ~8!

with

ĝuv5v̂uf̂uv$v̂v1rvĥvv%. ~9!

Solving for csr we obtain

ĉuv
sr 5@v̂u#21@ ĥuv2ĝuv#@v̂v1rvĥuv#21. ~10!

Note that two matrices must be inverted in the above exp
sion for ĉ, namely the matrixv̂ with dimensions equal to the
number of sites on the solute, and the matrix,x̂v5v̂v

1rvĥvv , with dimensions equal to the number of solve
atoms. Both of these matrices become ill conditioned n
k50, where all elements of each take on an identical va
leading to difficulties when evaluating Eq.~10!.

The HNC expression for solvation free energy is giv
by6,7

Dm~HNC!5
r

2b (
ag

E 4pr 2@22cag~r !1hag
2 ~r !

2hag~r !cag~r !#dr. ~11!

Note that the integral of the first term is a multiple ofĉ(0).
Although this term cannot be obtained from either the HN
or the RISM equation, fortunately, as we will describe belo
the complete solvation free-energy expression may be ev
ated by appropriately combining terms dependent upon
components ofc, which are calculated separately from Eq
~1! and ~2!.

A. Solvation free energy

In this section we formulate an improved expression
solvation free energy,Dm. In doing so it is recognized tha
the HNC and RISM equations are, in fact, inherently inco
patible and thus modifications must be made to incorpo
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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2189J. Chem. Phys., Vol. 121, No. 5, 1 August 2004 Thermochemistry of solvation
the differences between their two separate solution sets
will also discuss our handling of long-range boundary co
ditions.

We first considered how we could combine the solutio
c to the RISM and HNC equations in an adaptation of
solvation free-energy expression that would allow us to c
culate energies most accurately. To arrive at this adapta
we considered the invariance principle satisfied by the fr
energy expression, pointed out by Singer and Chandler.6 An
invariance of the solvation free-energy expression about
simultaneous solution to the RISM and HNC equations w
shown when this expression was rewritten as

bDm5r(
a,g

E drH 2exp@2buag~r !1hag~r !

2cag~r !#1hag~r !112cag~r !2hag~r !cag~r !

1
1

2
hag

2 ~r !J
1~2p!23rE dkH (a,g

ĉag~k!ĥag~k!

2
1

2 (
a,g,s,s8

ĉag~k!ĉss8~k!v̂as~k!x̂gs8~k!J . ~12!

The differential of this equation with respect toc is6

bdDm5r(
a,g

E dr$exp@2buag~r !1hag~r !2cag~r !#

212hag~r !%dcag~r !

1~2p!23rE dk(
a,g H ĥag~k!

2(
s,s8

ĉss8~k!v̂as~k!x̂gs8~k!J d ĉag~k!. ~13!

Note that the terms in the brackets, respectively, vanish w
the HNC and RISM equations are satisfied byh and c. A
natural decomposition ofDm is now evident. Namely, to pre
serve the invariant form of Eq.~13!, we substitute the solu
tions c to the HNC and RISM equations, respectively, in
the two brackets in Eq.~12! and condense terms to write

Dm5
r

2b (
ag

E 4pr 2$22cag8
HNC

~r !@11hag~r !#

1@hag~r !#21hag~r !cag
RISM~r !%dr, ~14!

where cHNC satisfies the HNC equation andcRISM satisfies
the RISM equation. The invariance satisfied by the expr
sion for the solvation free energy implies that although
direct correlation function being used may be approxima
yet our approximation can lead to only a minor error in o
calculated solvation free energy.

Upon examination of this expression for solvation fr
energy, its import becomes apparent: this decomposition
lows the data available for the direct correlation functio
from the RISM and HNC equations to complement ea
Downloaded 15 Jul 2004 to 155.101.19.40. Redistribution subject to AIP
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other. The range ofr for which cHNC is unknown matches the
condition 11h50, and thus contributes nothing to the fir
term in the free-energy expression. Moreover, the last te
given by a multiple of the integral of the product ofh and
cRISM, is proportional to the integral of the product of th
Fourier transformsĥ and ĉRISM over k. Integration over
three-dimensional space contributes a factor ofk2 to this
term, which reduces the error associated with the uncerta
in ĉ at low k.

The Gaussian fluctuation~GF! method does not depen
upon the HNC equation for its derivation for solvation fre
energy. Instead the direct correlation functionc is treated as
the linear response function of the probability distribution
a perturbation. The probability distribution is assumed to
Gaussian. This expression can be derived either by fixing
solute molecule and one solvent molecule and letting the
of the solvent perturb the system, or by representing the p
solvent as perturbed in a linear response to the solute m
ecule. Either way, the expression obtained is20

Dm~GF!5
r

2b (
ag

E 4pr 2@22cag~r !

2hag~r !cag~r !#dr. ~15!

Recently Ten-no has shown that there is a serious flaw
the HNC expression~11! for solvation free energy; namely
its value has an artificial dependence upon the numbe
dummy solute sites added.21 The HNC approach approxi
mates the solvation free energy as a sum over all pairs
sites of excess chemical potential terms due to each
Each such term is found from the product of the particu
site-site correlation function with the pair potential, with th
positions of all other sites being averaged over

2bDmHNC5r(
a,s

E
0

1

dlE dr @2buas~r !gas~r ;l!#.

~16!

However although we may assume that the potential itse
pair decomposable, yet the radial density of a particular
is correlated to the density of other sites in the same m
ecule. When the angular dependence of this density is pr
eraged in forminggas, the accuracy of calculated free ene
gies is compromised. In an alternate solvation free-ene
expression, Ten-no treats the solvation free energy as ari
from the potential energy, rather, of the entire solute m
ecule interacting with solvent molecules

2bDmPW5rE dr1,2K E
0

1

dl

@2bU~r1,2!G~r1,2;l!#L
V̂1V̂2

, ~17!

where the average is taken over all angular orientations
solute and solvent molecules. Integration over the coup
parameter is performed prior to decomposition into site-s
contributions. ‘‘Partial wave’’ relations are then used to o
tain the solvation free-energy expression,21,22
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Dm~PW!5
r

2b (
ag

E 4pr 2$22cag
HNC~r !@11hag~r !#

1hag~r !hag
PW~r !1hag~r !cag

RISM~r !%dr,

where

ĥsv
PW5@v̂s#

21@ ĥsv#@v̂v#21. ~18!

Note that the second term in this integral substitutes for
term

r

2b (
ag

E 4pr 2@hag~r !#2dr

in the expression forDm (HNC) @see Eq.~11!# and incorpo-
rates, through the matricesv̂, structural information abou
both solute and solvent molecules. This second term is
sent altogether in the Gaussian fluctuation expression forDm.

Because of the thoroughness shown in the derivation
the partial wave~PW! free-energy expression when com
pared to the derivations of the HNC and GF expressio
which make rather broad assumptions, the PW expressio
expected to yield the most accurate energies. We will confi
this prediction with a comparison of these three method
the results section, Sec. IV. For this reason, we take ad
tage of the PW free-energy formulation for the results
ported in this paper.

1. Bridge-function corrections

It has been pointed out that it is in fact impossible
simultaneously satisfy both the HNC and RISM equatio
The HNC equation is based upon topological reduction
the diagrammatic expansion for the correlation function,h.
However starting with the RISM equation, an attempt to i
pose a diagrammatic reduction leads to the diagramm
expansion ofc as the sum of those diagrams inh that have no
nodal circles. This, however, is not consistent with the RIS
equation, but rather leads to more complex systems of e
tions, such as the Chandler–Silbey–Ladanyi integ
equations.23 It follows that no such topological reduction o
the RISM equation can exist. Thus, in order to achieve
curate results, it is essential to make an appropriate cor
tion to the solvation free-energy expression using the bri
function to account for the differences between solutions
the HNC and RISM equations.

By going about the solution of the RISM equation sta
ing from a prior knowledge ofh, we obtain insight into
where the discrepancy betweencRISM andcHNC is most sig-
nificant. At low k, the matrices in the RISM equation are n
only inexact in relation to the HNC equation, but also th
associated condition numbers converge to` ask→0. It fol-
lows that the solutionĉ to the RISM equation is not at a
accurate at lowk, relative to the HNC relation. To see thi
consider the standard result of numerical analysis stating
an upper bound to the relative errorDx resulting from evalu-
ating the solutionx5A21b to the matrix equationAx5b is
given by cond(A)iEi /iAi , where the matrixE represents the
error in the matrixA.24 Now let v̂exact represent the matrix
which, when substituted forv̂ in the RISM equation, would
provide consistency with the HNC equation. Then, in mu
Downloaded 15 Jul 2004 to 155.101.19.40. Redistribution subject to AIP
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plying by the matrix inversev̂21 when solving the RISM
equation@see Eq.~10!#, the incongruity between the two ma
trices v̂exact and v̂ is amplified to an error in the solution
cRISM, which can be as large as

cond~v̂ !S iv̂RISM2v̂exacti
iv̂RISMi D ~19!

and can be large enough to dominate at lowk. Thus it is
essential to correct for this discrepancy, or bridge functi
Bag(r )5cag

RISM(r )2cag
HNC(r ), by using an appropriate term

to incorporate it into the expression being used for solvat
free energy. Note that we expect this bridge function,B, to
have the following property: It should be largest atk50, and
decrease rapidly to 0 at largerk, where the relevant matrice
are well conditioned.

Duh and Haymet have used empirical methods to de
mine this bridge correction as a function of the variables
5h2c1u(2), where the potential energy functionu has
been decomposed as the sumu5u(1)1u(2) of short-and
long-range components,u(1) andu(2), respectively. The fol-
lowing expression was used for this separation:

u2
ag~r !524«agS sag

r D 6

expF21

r* S sag

r D 6r* G2
fag~r !

b
,

where

r* 5 (
aPsolvent

rasaa
3 . ~20!

By making the approximation that boths andh are propor-
tional to the coupling parameterl, they modified the argu-
ment used by Singer and Chandler6 in deriving their original
expression for solvation free energy to obtain the followi
expression for the bridge-function-corrected solvation f
energy.25,26

Dm~HNC!5
r

2b (
ag

E 4pr 2F22cag
HNC~r !@11hag~r !#

1hag
2 ~r !1hag~r !cag

RISM~r !

2
2hag~r !

sag~r !
E

0

sag
ds8Bag~s8!Gdr. ~21!

By following the arguments used by Ten-no in deriving t
partial wave solvation free-energy expression,21 it is ob-
served that the bridge-function-dependent term in the exp
sion above remains correct in the partial wave formalism

Duh and Haymet obtainedB5cRISM2cHNC by running
simulations and RISM calculations, and then graphedB
againsts.26 An equation was then fit to the data to expressB
as a function ofs, which was later improved by Duh an
Henderson.27 The integral of this expression is26,27
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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ds8B~s8!5

81

50
s2

7

20
s22

9

2
lnS 11

s

3D2
9

125
lnS 11

5s

3 D , for s>0

. ~22!

2191J. Chem. Phys., Vol. 121, No. 5, 1 August 2004 Thermochemistry of solvation
0 H
2

1

6
s3, for s,0
s

e

he

ia

tio

on
-
n
e

be-
re

ion

g.
The mean spherical approximation~MSA! closure,

g~r !5@12ebu1~r !#21@c~r !1bu2~r !#, ~23!

was used for the RISM calculations in performing the fit ju
described. We calculateds(r ) by using the MSA to write

sag~r !5hag~r !2cag
MSA~r !2buag

~2!~r !

5gag~r !ebuag
~1!

~r !21, ~24!

and evaluatings using the last expression in this equality.
Our final solvation free-energy expression is thus giv

by

Dm5
r

2b (
ag

E 4pr 2@22cag
HNC~r !@11hag~r !#

1hag~r !fag~r !#dr

1~2p!23
r

2b (
ag

E 4pk2@ ĥag~k!ĥag
PW~k!

1ĥag~k!ĉag
RISMsr~k!22ĥag~k!b̂ag~k!#dk, ~25!

where

bag~r !5
1

sag~r !
E

0

sag~r !

ds8Bag~s8!

and ĉag
RISMsr5 ĉag

RISM2fag @see Eq.~6!#.
Because the function ofk given by

(
a,g

ĥag~k!ĉag
RISMsr~k!

is invariant with respect to small changes inĉRISMsr and this
term is precisely a multiple of the contribution made to t
solvation free-energy integrand byĉRISMsr, we chose to show
this function in Fig. 1. We graphed this function using rad
distribution functions generated by theBOSS Monte Carlo
simulation program,28 for methanol in water. Also shown in
the same diagram is the contribution made to the solva
free-energy integrand by the bridge functionB. This contri-
bution is given by

(
a,g

2ĥag~k!b̂ag~k!.

Note the shape of the latter function, starting out atk50
with a large value comparable to that of the contributi
from ĉRISMsr and declining rapidly to zero. The rapid de
crease in the bridge function coincides with and represe
the effect of the rapid improvement of conditioning of th
matrices in the RISM equation ask is increased.
Downloaded 15 Jul 2004 to 155.101.19.40. Redistribution subject to AIP
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To investigate the significance of the resemblance
tween the two functions plotted in Fig. 1, we analyze in mo
detail their difference. We first expressb(r ) as the integral
over the coupling parameter,

b~r !5E
0

1

Bag~r ,l!dl

5E
0

1

@cag
RISM~r ,l!2cag

HNC~r ,l!#dl

5E
0

1

@cag
RISMsr~r ,l!1fag~r ,l!2cag

HNC~r ,l!#dl

>
1

2
cag

RISMsr~r !1E
0

1

@fag~r ,l!2cag
HNC~r ,l!#dl,

~26!

where the last approximation is justified by the assumpt
made above that boths andh are proportional to the coupling
parameterl,26 from which it can be inferred thatcRISMsr's
2h is also approximately linear in the variablel. Thus the
difference atk50 between the two functions graphed in Fi
1 can be approximated as the product of thek50 Fourier
transform of the sum of site-site components,

2(
ag

E
0

1

@fag~r ,l!2cag
HNC~r ,l!#dl

5(
ag

E
0

1

cag
HNCsr~r ,l!dl, ~27!

with 2ĥ(0). Thelower value taken on atk50 by the differ-
ence between these two functions compared to thek50

FIG. 1. Contributions to solvation free-energy integrand fromcRISMsr andB
for methanol in water.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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value taken on by the function(a,gĥag(k) ĉag
RISMsr(k) may

therefore signify that the solutioncHNC to the HNC equation
approaches the asymptotic limit off somewhat faster than
cRISM does.

2. ‘‘Soft’’ sphere boundary condition

Because the sphere centered around a solute site b
integrated over to obtain the solvation free energy may
contain stoichiometric numbers of water O and H atoms,
calculated solvation free energy may depend upon the t
charge of atoms included within this sphere. This lack
charge neutrality will affect our calculated solvation free e
ergy, especially the integral over the outermost shell of wa
molecules of the solute-site components,

r

2b (
g

4pr 2$22fag~r !@11hag~r !#1hag~r !fag~r !%

52
r

2b (
g

4pr 2gag~r !fag , ~28!

of the term

r

2b (
ag

4pr 2$22cag
HNC~r !@11hag~r !#1hag~r !fag~r !%

occurring in the integrand of the solvation free-energy
pression~25!. Such a component represents the total C
lombic potential energy exercised on sitea by the solvent
molecules occupying this shell, and, in effect, all shells
yond this outermost one, and should equal 0 for an
charged solvent. If this component is nonzero, then the ef

TABLE I. Free energies of solvation~kcal/mol! of methanol using different
cutoff procedures.

Cutoff distance~Å! Hard-sphere cutoff Soft-sphere cutoff

10.4 24.94 24.44
10.6 21.06 24.55
10.8 0.23 24.45
11.0 1.86 24.36
11.2 0.08 24.46
11.4 24.93 24.69
11.6 27.51 25.07
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is, basically, to introduce a charge separation spanning
distanceR between the solute atom and the sphere’s bou
ary ~Table I!.

To correct for this error, a term must be added on, giv
by

2
1

2b (
a

qaqO,H2O

R
Dna~R!, ~29!

where

Dna~R!54prE
0

R

gaO~r !r 2dr24prE
0

R

gaH~r !r 2dr.

Dna represents the difference in coordination numbers fo
and H atoms of water about solute sitea. By making this
adjustment, we are subtracting off the effect of extra cha
from the boundary of the sphere surrounding each so
atom. Equivalently, we can think of each sphere as be
replaced by a ‘‘soft’’ sphere containing the entire water m
ecules within its inner boundary, without truncation of the
molecules at the boundary. We found that by adding this te
to the free-energy expression reasonable independence o
free energy from the integration limit can be obtained. This
seen in Table I, where, in the first column, the integrati
limit is given, in the second column, the calculated solvat
free energy before any adjustment has been made, and i
third, the results of adding our adjustment to the values in
second column.

B. Low- k extrapolation

Having addressed the issue of the exact form of the
vation free-energy expression to be evaluated, we now
to the problem of solving the renormalized RISM equatio
~10!, for the solutioncRISMsr.

We have discussed how bridge functions can be use
correct for the inexact nature of the matrices occurring in
RISM equation at lowk. However the relative error in the
solution ĉRISMsr to the RISM equation resulting from the in
accuracies inĥ must also be considered. The full numeric
error in evaluating the solutionx5A21b to the linear equa-
tion Ax5b has been shown to satisfy24

iDxi
ixi <cond~A!S iEi

iAi 1
iDbi
ibi D , ~30!
8

TABLE II. Free energies of solvation~kcal/mol!.

Solute RISM/MC

Bridge-
corrected

RISM/MC RISM/MCa

Bridge
corrected

RISM/MCa Expt.

Acetic acid 2.92 21.92 24.84 26.27 26.7
Ammonia 21.94 23.44 22.48 23.16 24.3
Ethane 11.2 6.37 2.67 1.30 1.
Methylamine 3.76 0.59 21.50 22.65 24.6
Methane 0.95 21.61 20.16 21.08 2.0
Methanol 0.66 24.31 23.34 24.36 25.1
Methanethiol 6.46 2.80 21.23 22.24 21.2
TIP3P water 24.50 25.34 25.88 26.27 26.3

aWe used a low-k integration cutoff ofcRISMsr up to 5Dk.
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where, as above, the matrixE represents the error in th
matrix A. Therefore there is a second term in the upp
bound for the relative error inĉ that arises when multiplying
by the matrix inversev̂21 in solving the RISM equation
@again, see Eq.~10!#, which must also be considered,

iD ĉi
i ĉi <cond~v̂ !S iDv̂i

iv̂i D1cond~v̂ !S iDĥi

i ĥi
D . ~31!

At low k, we can expect, again, that this error term w
dominate our solutionĉRISMsr. To address this problem, w
must modifyv̂ to a better-conditioned matrix.

We first note that our expression for solvation free e
ergy, Eq.~25!, can be approximated without knowing ind
vidual site-site direct correlation functions at smallk. In fact
at k50, for all sitesa and g, rĥa,g(k) represents the tota
fractional change in the number of solvent molecules in
entire three-dimensional space surrounding a solute mole
compared to in pure solvent, and thus is independent of
individual sitesa andg. For small positivek, we can make
the approximation that values ofĥ(k) concur over a range o
proximal sites. In that case all that is needed to find
solvation free energy are the terms,

(
g

ĥag~k!ĉag
RISMsr~k!>^ĥag~k!&gS (

g
ĉag

RISMsr~k! D ,

~32!

where the sum is taken over those sites for which value
ĥ(k) approximately agree. The ill conditioning of the matr
v̂ results from the slow decay from the value of 1 of mat
elements proceeding away from the diagonal either alon
row or a column. If sites are ordered so that consecutive s
are neighboring to each other within the solute molecu
then adjacent entries of the matrixv̂ are close in value.
These two aspects of the low-k behavior ofĉ andv̂, first, the
replacement of separate site-site values ofĉ with a sum of
such values in the free-energy expression, and, second
similarity of neighboring entries of the matrixv̂, allow the
dimensionality of the original RISM equation to be reduce
as the ill-conditioned matrixv̂ is replaced by a better
conditioned matrix with only one row and one column f
each group of solute sites being incorporated into the s
This process is given in detail in the Appendix.

Thus although for mostk the evaluation of the term
(gĥag(k) ĉag

RISMsr(k) in the free-energy expression relie
upon the entire molecular geometry as given byv̂, as k
approaches 0 this geometry becomes decreasingly impor
and the focus on the solute molecule for this calculation
be broadened to encompass only groups of sites, so tha
jacent pairs, and at still smallerk-values groups of more tha
two sites, can be merged together and regarded as a s
site. Finally atk50, v̂ becomes completely irrelevant to ou
calculation of this term and we have

(
ag

ĉag~0!5
ĥsolute~0!

11rĥsolvent~0!
. ~33!
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It has been shown that the denominator in the above rati
equal torsolventkTxT

0, wherexT
0 denotes the isothermal com

pressibility of the pure solvent.4

The procedure just described can be applied only as l
ask is small enough so that adjacent rows and columns ov̂
are roughly equal. For largerk for which v̂ is still ill condi-
tioned, some elements ofv̂ may be small enough so tha
their replacement by 0 will produce better-conditioned m
trices, which can be used to replace the original matrices.
k very close to zero, rather than solving the RISM equat
we can use a quadratic interpolation of the for
(agĉag(k)5((agĉag(0))1Bk2, which is justified by the
low-k Taylor approximation of the sine function used in th
spatial Fourier transformation.

In practice, we must address the problem of what limit
set to the condition numbers occurring in the RISM equat
before applying one of the procedures just described.
number of digits of accuracy inĉ is less than that inĥ by as
much as the sum of the orders of magnitude of these co
tion numbers. Therefore a condition number of 100 m
seem rather high, especially considering that there are
ill-conditioned matrices occurring in the RISM equatio
However the invariance of its expression allows the sol
tion free energy to maintain stability versus the ill conditio
ing of the solution, and thus we found that the value of 1
is a reasonable maximum for permissible condition numb
of these matrices.

Note that the same invariance satisfied by the te

(agĥag(k) ĉag
RISMsr(k) in the integrand ofDm with respect to

the solution to the RISM equation is also satisfied by

term (agĥag(k)ĥag
PW(k), with respect to variations inĥPW.

We can therefore apply methods similar to those just

scribed to the evaluation ofĥsv
PW5@v̂s#

21@ ĥsv#@v̂v#21.
To test our inversion process, we first started with rad

distribution functions calculated by stand-alone RISM/HN
and then used these as input in the program we designe
determining the direct correlation functions, and from the
the solvation free energy. In Fig. 2 we graph the same fu

tion (a,gĥag(k) ĉag
RISMsr(k) as was shown previously in Fig

1. The figure compares the function evaluated usingĉ com-
ing from self-consistent solution of the RISM and HN
equations to the same function whereĉ is derived using our
method with ĥ obtained from RISM/HNC. Three differen
approximations in the low-k range were used. For the highe
spectrum of values ofk for which v̂ is ill conditioned, we
use the method of zeroing out entries ofv̂ which are close to
zero. This set of points is labeled by the series~1! in the
chart. At a somewhat lower range ofk, because the smalles
values occurring inv̂ are now closer to 1, it becomes mo
appropriate to use the matrix reduction procedure descr
above. These values ofk are labeled by the series~2!. Finally
for thosek values closest to 0, we used a quadratic fit of t
form A1Bk2, labeled by the series~3!. Although we hope to
eliminate the large error term caused by the enlargemen
small errors inĥ by huge condition numbers, yet we intro
duce by our modification ofv̂ another smaller error term. I
this error term is adequately minor, then the two functio
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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shown in Fig. 2 should almost overlap. In fact, we observ
close match between the two plots.

III. COMPUTATIONAL DETAILS

In this study, distribution functions were calculated
Monte Carlo simulations at 298 K using theBOSSpackage.28

The dimensions of solvent boxes used were large enoug
contain solvent water molecules at distances of up to;15 Å
from the center of any solute atom, and a periodic bound
condition was used. OPLS all-atom parameters were use
solutes and the TIP3P model was used for water in MC sim
lations. Except for the case of solvated water for which c
vergence is reached much more quickly, solvated syst
were equilibrated for 123106 configurations separated int
three batches of 43106 configurations each, followed by av
eraging over 283106 configurations run in seven batches
43106 configurations each. For water, batches were
250 000 configurations. Calculated radial distribution fun
tions were sampled at intervals of 0.04 Å and were gradu
smoothed to zero at distances exceeding 11 Å.

The OPLS force field was also used to obtain the p
potential when solving forc from the HNC equation. This
force field represents the pair potential as a Coulomb po
tial with the usual 12-6 van der Waals interactions, and u
the Lorentz–Berthelot mixing rules.

We used a water density of 0.033 34/Å3. The Fourier
transformations for the RISM calculations were carried
on a linear grid of 537 points, with zero aliasing to twice th
range,2 meaning that an additional 537 points were ze
filled. This gave a total interval length of 43 Å, which wa
used to calculate values ofk. Three kinds of approximation
used when solving the RISM equation forcRISMsr have been
described above. Fork.10Dk51.46, the problem of ill con-
ditioning was addressed by setting elements ofv̂ less than
0.1 equal to 0, and checking for the validity of the conditi

FIG. 2. Contributions to solvation free-energy integrand, for methano
water, from ~a! the solutioncsr to the RISM/HNC equations, and~b! the
solutioncRISMsr derived fromh, whereh has been solved for using RISM
HNC. Better-conditioned matricesv̂ were obtained by~1! zeroing out all
elements of the matrixv̂ that were sufficiently close to zero, and~2! reduc-
ing matrix dimensionality. For series~3!, we used a quadratic fit of the form
A1Bk2.
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$1/cond(v̂).0.011%. In case this condition was not met, a
entries of the matrixv̂ less than 0.2 were set equal to zer
the condition number was again checked, and this proc
was continued until all elements of ill-conditioned matric
v̂ less than 0.4 had been made equal to 0. The next step
to reduce by a factor of 2 the dimensionality of all remaini
ill-conditioned matricesv̂. We used only one such reductio
although for larger molecules, further reduction by factors
larger powers of 2 would most likely be advantageous. In
final stage, at small enoughk so that eitherv̂ remained ill
conditioned or else the matrixx̂ was ill conditioned, we used
a quadratic fit such as was described above. To ob
(agĉag(0) in Eq.~33!, we used the reference value29 for the
isothermal compressibilityxT

0 of water at 298 K equal to
4.524310210/Pa, or 11rĥsolvent(0)5rsolventkTxT

050.062.
A similar technique was employed in solving forĥPW as we
used to findcRISMsr.

When calculating the bridge function, the functions
5h2c1u(2) was calculated using Eq.~24!. The functions
seemed, for some intervals close tor 50, to assume values
unreasonably large for our purposes in using this function
determine the bridge function. We therefore reassigne
value of 1 to this function whenever its value exceeded 1

In carrying out the numerical integration for the solv
tion free energy, radial distribution functions were cut off
11 Å. Because of the problem with low accuracy at smak
values, we started the integration overk from a value ofk
56Dk50.876.

Stand-alone RISM/HNC equations were performed
ing the modified direct inversion of iterative subspace co
vergence technique.30 For stand-alone RISM/HNC calcula
tions, the OPLS parameter set requires some sm
modifications. Namely, whenever the OPLS parameter
had assigned values of 0 to the Lennard-Jones paramete
certain hydrogen atoms, these were reassigned nonzero
ues of «50.046 ands50.40.10 This change was made i
order to preclude the appearance of high artificial peaks
the calculated radial distribution functions. To compare w
the stand-alone RISM/HNC calculations, a few coupl
RISM/MC calculations were also repeated using this mo
fied OPLS parameter set. The linear extrapolation proced
mentioned below was performed without using a bridge c
rection or low-k integration cutoff, but instead continuous
assigning ĉRISMsr(k) a constant value for allk510Dk
51.46.

IV. RESULTS

Table II gives solvation free-energy results obtained
running our coupled RISM/MC program for several test m
ecules. The second-to-last column displays the results of
bridge-function corrected calculations found by using E
~25!, for which we have applied the low-k integration cutoff
described in the preceding section. Most of these res
show good agreement with experiment. The main excepti
are methane and methylamine. However, part of the prob
with these molecules may be attributable to the force fi
itself. For example, calculated solvation free energies for

n

 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



, and

2195J. Chem. Phys., Vol. 121, No. 5, 1 August 2004 Thermochemistry of solvation

Downloaded 15 Ju
TABLE III. Free energies of solvation~kcal/mol!.

Solute
283106

configurations
323106

configurations
363106

configurations Averagea

Acetic acid 26.27 26.04 26.50 26.27 6 0.23
Ammonia 23.16 22.11 22.09 22.45 6 0.61
Ethane 1.30 0.39 1.47 1.056 0.58
Methylamine 22.65 22.07 22.75 22.49 6 0.37
Methane 21.08 21.40 21.46 21.31 6 0.20
Methanol 24.36 23.95 24.71 24.34 6 0.38
Methanethiol 22.24 22.12 22.54 22.30 6 0.22

aAverage was computed from values corresponding to 28 million, 32 million, and 36 million configurations
the error represents the non-biased standard deviation from the average.
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kanes such as methane are quite potential dependent, b
contingent upon small differences in shapes and sizes of
ter pockets.

We also include in Table II results where different o
tions are turned off in order to see their relative importan
in the calculated total free energy of solvation. In particu
columns, respectively, display the total free-energy integ
without including the bridge correction or any low-k integra-
tion cutoff, the same integral including the bridge correctio
and this integral starting at the low-k cutoff point but without
any bridge correction. The values given in the second c
umn, corresponding to unmodified RISM/MC, in almost
cases do not reflect the correct ordering of the solvation
energies of the eight molecules. Furthermore, these va
are all but one too positive when compared to the experim
tal values, with an average absolute error of 5.75 kcal/m
The function(a,gĥag(k) ĉag

RISMsr(k) shown in Fig. 1 exhibits
a large maximum atk50. However the area under the curv
corresponding tok between 0 and about 10Dk should not
contribute to the solvation free energy nearly as substant
as is calculated using unmodified RISM/MC, because
area is partially cancelled by the area under the cu
(a,g2ĥag(k)b̂ag(k) also seen in Fig. 1. The former are
contributes a positive quantity to the energies in the sec
column, accounting for their excessively positive values.

Because the bridge-function corrections are subtrac
from the sum in Eq.~25!, the values in the third column o
Table II are a great deal more negative than those in
second column, and the bridge correction leads to va
generally much closer to experimental ones. Neverthel
the ordering of most of the solvation free energies rema
incorrect.

Right aroundk50, the accuracy of bothĥ(k) and b̂(k)
is questionable, and so the effect of truncation starting ak
55Dk is shown in the fourth column. We have neglected
bridge function, and so the values are again for the most
too positive. The orders of water and acetic acid are rever
as are the orders of the pairs ammonia/methylamine
methane/ethane.

When the bridge function is included along with th
truncation, most results move closer to experimental valu
the notable exception being methane, for which our cal
lated result becomes even more erroneously negative. Ac
acid is now correctly predicted to be least solvated, altho
l 2004 to 155.101.19.40. Redistribution subject to AIP
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it shares this property with water. The average absolute e
for the molecules is now only 1.11 kcal/mol.

Concern about the need to check the reasonablenes
the convergence and quality of simulations prompted us
estimate the statistical error associated with our free-ene
results. To analyze the sensitivity of our results to the sim
lation length, we recalculated solvation free energies us
radial distribution functions averaged over eight or ni
batches of 43106 configurations each. Solvation free ene
gies obtained using these 323106 or 363106 configurations
are shown in Table III, along with those obtained using o
original 283106 configurations. Average values from the
three simulation lengths are given in Table III together w
the statistical error, representing one standard deviation f
the average. These errors range in value from 0.20 to 0
kcal/mol. Smaller errors in calculated results can be expec
if simulations are run over longer time intervals.

Table IV compares the results of the HNC, GF, and P
methods for the molecules methanol and water. It can
seen that the partial wave approach produces values clo
to the experimental ones, lying somewhere in between
HNC values, which are too positive, and the GF valu
which are excessively negative.

We have observed that if, instead of solving the RIS
equation at lowk, we simply linearly extrapolateĉRISMsr as a
constant value at lowk, reasonable results can also be o
tained. In fact this was the procedure originally used to ca
out the calculations for our previously published results14

The similarity between our original and present results c
be explained as follows: A large part of the low-k contribu-
tion of ĉRISMsr to the solvation free energy is canceled by th
made byb̂. By extrapolating this contribution at lowk, we
are merely cutting off the steep rise in this function ask tends
to 0. If this extrapolation is carried over to stand-alo
RISM/HNC calculations, then the results of these calcu
tions are likewise improved. This can be seen in Table V.
the second column, we show the results of stand-al

TABLE IV. Free energies of solvation~kcal/mol!.

Solute Expt. DmHNC DmGF DmPW

TIP3P water 26.3 25.10 29.76 26.27
Methanol 25.1 5.73 28.00 24.36
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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RISM/HNC calculations without using the extrapolation pr
cedure. In the same way as we observed excessively pos
values in Table II when using unmodified RISM/MC, so al
the results seen here, with the exception of water, are
more positive than the experimental values. They are, m
over, in the wrong sequence. In the third column, we sh
stand-alone RISM/HNC results improved by using the
trapolation procedure. It can be noted that this extrapola
improves both the ordering and the values of calculated
vation free energies, remarkably. A few results of RISM/M
calculations using the modified OPLS parameter set and
extrapolation procedure are given for comparison in
fourth column, showing some improvement over the e
trapolated RISM/HNC values.

Some representative radial distribution functions for a
monia in water are shown in Fig. 3.

V. CONCLUSIONS

We have derived an expression for solvation free ene
that is invariant with respect to small fluctuations in the c
culated direct correlation functionc. This allows the ampli-
fication of small errors inĥ to large errors inĉRISMsr, by the
high condition numbers of the matrices occurring in t
RISM equation at lowk, to contribute minimally to the erro
in the solvation free energy.

Condition numbers converging tò as k→0 magnify
discrepancies between the RISM and HNC equations

TABLE V. Free energies of solvation~kcal/mol!.

Solute RISM~PW!/HNC
RISM~PW!/HNC

~extrapolated!
RISM~PW!/MC
~extrapolated! Expt.

Acetic acid 21.63 28.95 26.7
Ammonia 22.97 24.82 24.3
Ethane 7.45 0.55 1.83
Methylamine 21.67 27.04 24.6
Methane 5.37 1.87 2.0
Methanol 22.58 26.19 24.67 25.1
Methanethiol 5.10 0.77 21.2
TIP3P water 27.17 28.31 25.90 26.3

FIG. 3. MC-calculated solute/solvent radial distribution functions for a
monia in TIP3P water.
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large differenceB̂5 ĉRISM2 ĉHNC in the direct correlation
function, neark50. The solvation free-energy expressio
must be improved to account for this difference, or brid
function. We used the expression for solvation free ene
with a bridge correction developed by Haymet and c
workers. Our results demonstrate that much of the contri
tion to free energy made by the large values taken on by
integrand in the solvation free-energy expression in the ra
of k close to 0 is canceled by the bridge-function contrib
tion of opposite sign. As our results demonstrate, care
handling of this integrand at lowk can also be expected t
lead to improved absolute solvation free-energy values w
using the stand-alone RISM/HNC method. By inverting t
RISM expression forĥ in terms ofĉ regularly worked with,
to one forĉ in terms ofĥ, we have obtained insight into th
source of some of the difficulties associated with the sta
alone RISM/HNC method.

Reasonable results were obtained by apply
RISM/MC to a small set of neutral test cases. Many qu
tions remain concerning how the accuracy of the RIS
simulation methodology compares to the stand-alone RIS
HNC approach, or to free-energy simulations. Although o
results look good, yet some of these have significant er
and there is certainly room for improvement.

We expect that studies focused on searching for bet
quality bridge functions will lead to improvement of both th
RISM/MC and the stand-alone RISM/HNC methods for c
culating solvation free energy. In particular, the correct d
termination of the quantity(a,g2ĥag(k)b̂ag(k) neark50 is
a large factor contributing to the accuracy of each of th
two methods. Especially in the case of RISM/MC, furth
work directed towards the accurate evaluation
(a,gĥag(k) ĉag

RISMsr(k) neark50 is also needed.
One appeal of the RISM/simulation methodology is

simplicity, requiring only one MD or MC simulation, fol-
lowed by algebraic evaluation of the direct correlation fun
tion, from which a RISM solvation free energy can be c
culated, without requiring any iterative solution of the RIS
and closure equations. We are in the process of perform
an application of the RISM/simulation methodology to t
alanine dipeptide. Because this system has been studie
widely, we will be able to turn for comparison not only t
experimental findings, but also to a wide range of theoret
results. By examining in detail how best to accurately so
for the direct correlation functions satisfying the RISM equ
tion, we have provided a basis for extending applications
the coupled RISM/simulation method to larger systems.
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APPENDIX: REDUCTION OF MATRIX DIMENSIONALITY IN THE RISM EQUATION AT LOW k

The matrix reduction procedure used to solve the equation

@ ĥuv2ĝuv#5@v̂u#@ ĉuv
RISMsr#@v̂v1rvĥvv# ~A1!

for ĉRISMsr @see Eq.~10!# at low k is shown below. Note that ask→0, the matrixĝuv converges to the 0 matrix. In the treatme
shown here, pairs of proximal solute sites 2u11 and 2u are merged into a single site in the approximationv̂2u11,u8(k)
'v̂2u,u8(k).

3
~ ĥ2ĝ !00 ~ ĥ2ĝ !01 ~ ĥ2ĝ !02

~ ĥ2ĝ !10 ~ ĥ2ĝ !11 ~ ĥ2ĝ !12

~ ĥ2ĝ !20 ~ ĥ2ĝ !21 ~ ĥ2ĝ !22

~ ĥ2ĝ !30 ~ ĥ2ĝ !31 ~ ĥ2ĝ !32

~ ĥ2ĝ !40 ~ ĥ2ĝ !41 ~ ĥ2ĝ !42

] ] ]

~ ĥ2ĝ !s0 ~ ĥ2ĝ !s1 ~ ĥ2ĝ !s2

4 53
1 v̂01 v̂02 v̂03 v̂04 ¯ v̂0s

v̂10 1 v̂12 v̂13 v̂14 ¯ v̂1s

v̂20 v̂21 1 v̂23 v̂24 ¯ v̂2s

v̂30 v̂31 v̂32 1 v̂34 ¯ v̂3s

v̂40 v41 v̂42 v̂43 1 ¯ v̂4s

] ] ] ] ] � ]

v̂s0 v̂s1 v̂s2 v̂s3 v̂s4 ] 1

4 3
ĉ00

RISMsr ĉ01
RISMsr ĉ02

RISMsr

ĉ10
RISMsr ĉ11

RISMsr ĉ12
RISMsr

ĉ20
RISMsr ĉ21

RISMsr ĉ22
RISMsr

ĉ30
RISMsr ĉ31

RISMsr ĉ32
RISMsr

ĉ40
RISMsr ĉ41

RISMsr ĉ42
RISMsr

] ] ]

ĉs0
RISMsr ĉs1

RISMsr ĉs2
RISMsr

4
3F x̂00 x̂01 x̂02

x̂10 x̂11 x̂12

x̂20 x̂21 x̂22

G ~A2!

↓

F ~ ĥ2ĝ !00 ~ ĥ2ĝ !01 ~ ĥ2ĝ !02

~ ĥ2ĝ !20 ~ ĥ2ĝ !21 ~ ĥ2ĝ !22

~ ĥ2ĝ !40 ~ ĥ2ĝ !41 ~ ĥ2ĝ !42

] ] ]

~ ĥ2ĝ !s0 ~ ĥ2ĝ !s1 ~ ĥ2ĝ !s2

G5F 1 v̂02 v̂04 ¯ v̂0s

v̂20 1 v̂24 ] v̂2s

v̂40 v̂42 1 ¯ v̂4s

] ] ] � ]

v̂s0 v̂s2 v̂s4 ¯ 1

G
3F ĉ00

RISMsr1 ĉ10
RISMsr ĉ01

RISMsr1 ĉ11
RISMsr ĉ02

RISMsr1 ĉ12
RISMsr

ĉ20
RISMsr1 ĉ30

RISMsr ĉ21
RISMsr1 ĉ31

RISMsr ĉ32
RISMsr1 ĉ32

RISMsr

ĉ40
RISMsr1 ĉ50

RISMsr c41
RISMsr1 ĉ51

RISMsr ĉ42
RISMsr1 ĉ52

RISMsr

] ] ]

ĉs0
RISMsr ĉs1

RISMsr ĉs2
RISMsr

G F x̂00 x̂01 x̂02

x̂10 x̂11 x̂12

x̂20 x̂21 x̂22

G . ~A3!

To better facilitate our solvation free-energy determination using the solutionĉRISMsr, we implement this as

3
~ ĥ2ĝ !00 ~ ĥ2ĝ !01 ~ ĥ2ĝ !02

0 0 0

~ ĥ2ĝ !20 ~ ĥ2ĝ !21 ~ ĥ2ĝ !22

0 0 0

~ ĥ2ĝ !40 ~ ĥ2ĝ !41 ~ ĥ2ĝ !42

] ] ]

~ ĥ2ĝ !s0 ~ ĥ2ĝ !s1 ~ ĥ2ĝ !s2

4 53
1 0 v̂02 0 v̂04 ¯ v̂0s

0 1 0 0 0 ¯ 0

v̂20 0 1 0 v̂24 ¯ v̂2s

0 0 0 1 0 ¯ 0

v̂40 0 v̂42 0 1 ¯ v̂4s

] ] ] ] ] � ]

v̂s0 0 v̂s2 0 v̂s4 ¯ 1

4 3
ĉ00

RISMsr ĉ01
RISMsr ĉ02

RISMsr

ĉ10
RISMsr ĉ11

RISMsr ĉ12
RISMsr

ĉ20
RISMsr ĉ21

RISMsr ĉ22
RISMsr

ĉ30
RISMsr ĉ31

RISMsr ĉ32
RISMsr

ĉ40
RISMsr ĉ41

RISMsr ĉ42
RISMsr

] ] ]

ĉs0
RISMsr ĉs1

RISMsr ĉs2
RISMsr

4
3F x̂00 x̂01 x̂02

x̂10 x̂11 x̂12

x̂20 x̂21 x̂22

G , ~A4!

where all nondiagonal elements of even rows and columns of the matrixv̂ have been replaced with zeros, as well as
elements of even rows of the matrixĥ2ĝ. Because the solutionĉRISMsr will now have all zeros in its even rows, our functio
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for solvation free energy applies exactly the same as for
values ofk for which this matrix reduction is unnecessary.
loop can be written into the program being used to fi
ĉRISMsr, so that the dimensionality of the matrixv̂ is gradu-
ally reduced by powers of 2 as the severity of the ill con
tioning increases in the limit ask→0.
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