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for thermochemistry of solvation: Theory and prospects
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We present a new methodology for computing solvation free energy, which is based upon the
reference interaction site mod@&SM)/hypernetted chaifHNC) solvation free energy expression,

but which substitutes radial distribution functions taken from simulations for those calculated by
simultaneous solution of the RISM and HNC equations. Consequently, solvation free energy can be
obtained from a single molecular dynamics or Monte Carlo simulation. Here we describe in detail
the coupled RISM/simulation approach, and offer some error analysis. Finally we give the results of
its application to a set of small test molecules in aqueous solution. The success shown in some of
our results demonstrates that the coupled RISM/simulation approach is worth considering further as
a potentially useful tool in studies of solvated systems, such as aqueous molecular biosystems.
© 2004 American Institute of Physic§DOI: 10.1063/1.1760741

I. INTRODUCTION impractical®* On the other hand, the RISM/HNC formalism
. . . . allows the integration over the coupling parameter to be per-
The reference interaction site mod@RISM) integral 9 coupiing p > P
: : . formed analytically by expressimA u/d\ as the exact dif-
equation theory has received a large amount of interest over . : g :
ferential of a function that is independentXxf In this way,
the past three decades as a means to calculate the solvaU%n . . L
: . the complexity of a solvation free-energy calculation is re-
structure surrounding a solute molecule, as described by I’E(ij- qt dous|
dial distribution functiong:* Still more importantly, by em- uceAIthremﬁnRIOSul\?l Y- 0 b ising altermative ¢
ploying the hypernetted chaiiNC) closure relation, an ex- oug appears 1o be a promising afternative 1o

pression has been derived for the solvation free energy aSf([jlee-energy simulations, difficulties are encountered during

function of these solvent distributiofis’ Solvation free en- IS @pplication. In the first place, it can be difficult to achieve
ergy constitutes an important, but difficult-to-find quantity, CONvVergence to a simultaneous solution of the RISM and
posing a challenge to computational chemists. This approacHoSure relations, especially for molecules with many atomic
provides an alternative to the more laborious free-energ?'tes such as proteirt$In addition, the accuracy of solvation
simulation methodology, and moreover one which, like thesd'®e energies calculated from RISM can be somewhat
simulations, depicts the solvent structure, thus presenting discouraging:
advantage over the popular continuum solvation models, ~With these problems in mind, we have proposed that a
which instead require that the solvent be described by afimple alternative to the RISM/HNC solvation free-energy
extensive set of parametérsHowever unlike free-energy Methodology might be to find accurate solvent distributions
simulations, RISM calculations are relatively computation-using a simulation, from these to solve the RISM and HNC
ally cheap?—ll equations for the direct correlation functions, which are also
The determination of a solvation free-energy differenceneeded in a RISM free-energy calculation, and lastly to com-
by free-energy simulation requires that many simulations bdine these functions as input to the RISM solvation free-
run as one solvated molecule is gradually “mutated” into energy expression. That is, radial distribution functions en-
another, with explicit modeling of all solute and solvent at-tering the solvation free-energy expression would come from
oms. A value between 0 and 1 of the coupling parametersimulation results, and the direct correlation functions uti-
which describes the fractional character of the first moleculdized would be derived from these distributions by making
at each point along the path and is denoted\bys associ- use of the RISM and HNC equatiofis.
ated with each simulation. Free-energy differences associated Other studies have been carried out mixing information
with the concomitant displacement of water molecules efobtained from RISM theory with that derived from simula-
fected during this transformation can be used to calculate thgons, but in a different framework and for a different pur-
relative solvation free energies of the two molecules as apose. These studies have utilized the RISM approach, rather,
integral over the coupling parameter in either the thermodyfor its cost-efficient depiction of solvation structure within
namic integration or the free-energy perturbation approachsimylations modeling a solute’s dynamics. For example, a
Reasonable, and sometimes quite accurate, relative solvatigfochastic dynamics simulation was performed by Pettitt and
free energies can be determined by this method. However the, workers in which RISM/calculated solute-solute correla-
process is quite complex, thus making it ratheron functions were compiled in a look-up table, which could
be referenced to find solvent contributions to potentials of
3 Author to whom correspondence should be addressed. mean force that were combined with nonsolvated internal
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energy termg® Likewise both molecular dynamic&viD) with g; denoting the charge on siteAs a result of this slow
and Monte Carlo(MC) simulations have been used to ex- decay ofc, ¢ becomes unbounded &s-0, and thusc does
plore the configuration spaces of peptides, in which solvatiomot lend itself well to numerical Fourier transformation. This
free energies calculated by RISM were summed with confordifficulty was formerly encountered when iterative tech-
mational energies to obtain total free-energy profifed.  niques for solving the RISM/HNC equations were extended
However, in the approach we take here, RISM, instead ofo polar molecules and ions. In the extended RISM approach
being used to supply the solvation structure, is taken advariXRISM) the long-range Coulomb asymptoticsaédre sepa-
tage of for its simple expression for solvation free energyrated out and “resummed,” using analytic Fourier transfor-
while solvent distributions are taken from simulation trajec-mation, to yield their contribution tt.>2 This process has
tories. Kast has explored some ideas similar to our 8wn.  been referred to as renormalization. We make use of the par-
Here we clarify the procedure used to carry out aticular renormalization scheme proposed by Hietal,*® in
coupled RISM/simulation solvation free-energy calculation,which c is expressed as the sum of long- and short-range
focusing on solutes dissolved in water. In addition, we dis-components as
cuss the errors occurring as these calculations are performed. sr
We also present the results of applying coupled RISM/MC to Cuv = Cup + Puy ©)
a few small neutral test molecules. where ¢(r)=— Bu®(r).
Because, unlike, the above function is divergent at
Il METHODOLOGY =0, it is convenient to make the modification
In our approach, a simulation is used to determine the  g(r)= _ﬁuc(r)erf(_r), (7)
solvation structure, described by radial distribution functions T
around each solute site. This data is combined with informawhere 7 is a constant best selected from the rang@5 to
tion gained from the RISM and HNC equations to find the —1.0: we used a value af= —0.81°
solvation free energy within the RISM formalism. Besides  The resultant decomposition bfis
the radial distribution function,g, the second function N . . ~
needed as input in the RISM formulation of solvation free  Nuw= Yus + ®uCopi®, +puhy,} 8
energy is the direct correlation function, Becausey is de- it
termined from simulation results, we no longer need to apply . .
an iterative strategy to solve the RISM and HNC equations — Yuy= @u®us{ @, +p,hyo}- (€)
simultaneously. Instead both of t_hes_e equations can be eMolving for ¢S’ we obtain
ployed separately for the determinationat*

The RISM and HNC equations are given as &S =[ay] [y — Fuo [ @+ pohue] 2 (10

h(k)=a(k)e(k)@(k) + pa(k)Ek)h(k), (1) Note that two matrices must be inverted in the above expres-
sion forc, namely the matrixo with dimensions equal to the

Gay(N)=eXH — By, (1) +hy, (1) —Cay(r)], (20 number of sites on the solute, and the matrix,=a,

whereh~g—1 is the correlation function, the carets indicate + p,h,,, with dimensions equal to the number of solvent

spatial Fourier transforms, the boldface denotes matrides, atoms. Both of these matrices become ill conditioned near
is the intramolecular correlation function, ands the inter- k=0, where all elements of each take on an identical value,
molecular pair potential. More precisely, lif; denotes the leading to difficulties when evaluating EQLO).

intramolecular separation between sites and B, then The HNC expression for solvation free energy is given
®4p(K) = Sopt (1= 8,5) (SiNKl,p/Kl ). by®’
When the HNC equation is solved fay the resulting
expression is AM(HNQ:%E f 47-rr2[—20ay(r)+h§y(r)
ay
Cary(F)= = BUgy () + Ny (r) —In[hy,(r)+1]. )

—h,.(r)c,,(r)]dr. 11
Note, however, that cannot be determined by this equation . ar(1)Car )]. _ . A( )
at small distances wherg vanishes and thus the natural Note that the integral of the first term is a multiple(©).

logarithm in the above expression loses meaning. Although this term cannot be obtained from either the HNC
Using the RISM equatiorg can be expressed in terms of or the RISM equation, fortunately, as we will describe below,
h as the complete solvation free-energy expression may be evalu-
R Y liin R s ated by appropriately combining terms dependent upon two
Cow=lay] Thyll@,+p,h,, ] " (49 components of, which are calculated separately from Egs.
For larger, c is known to decay as *; in particular, (1) and(2).
cij(r)— —Buﬁ-(r) as r—o, (5) A. Solvation free energy
whereu€ is the Coulomb potential given by In this section we formulate an improved expression for
solvation free energyAu. In doing so it is recognized that
uS(r)= 9i9; the HNC and RISM equations are, in fact, inherently incom-
" r’ patible and thus modifications must be made to incorporate
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the differences between their two separate solution sets. Wather. The range af for which ¢™N¢ is unknown matches the

will also discuss our handling of long-range boundary con-condition 1+h=0, and thus contributes nothing to the first

ditions. term in the free-energy expression. Moreover, the last term,
We first considered how we could combine the solutionsgiven by a multiple of the integral of the product bfand

c to the RISM and HNC equations in an adaptation of thecR'SM, is proportional to the integral of the product of the

solvation free-energy expression that would allow us to calFourier transformsh and cR'SM over k. Integration over

culate energies most accurately. To arrive at this adaptationhree-dimensional space contributes a factorkdfto this

we considered the invariance principle satisfied by the freeterm, which reduces the error associated with the uncertainty

energy expression, pointed out by Singer and Chafidier. in ¢ at low k.

invariance of the solvation free-energy expression about the The Gaussian fluctuatiofGF) method does not depend

simultaneous solution to the RISM and HNC equations wasipon the HNC equation for its derivation for solvation free

shown when this expression was rewritten as energy. Instead the direct correlation functiors treated as
the linear response function of the probability distribution to
BAp=p>, | dr —exff — BUg,(r)+h,,(r) a perturbation. The probability distribution is assumed to be
ay Gaussian. This expression can be derived either by fixing one

solute molecule and one solvent molecule and letting the rest
of the solvent perturb the system, or by representing the pure
solvent as perturbed in a linear response to the solute mol-
ecule. Either way, the expression obtained is

—Coy(N ]+ (1) +1—Ch(r)—hy (1) (r)

1 2
+§hay(r)

o p
+(2m) % f dk[E Cay(K)Nay(K) AplP=552 f 4T = 2C,,(r)
a,y ay
1 S ~hy(1)Ca(1)]dr. (15
=5 2 Cay(s (KK Fye (k). (12) _ _ _
a,y,s,s' Recently Ten-no has shown that there is a serious flaw in

the HNC expressioffll) for solvation free energy; namely,
its value has an artificial dependence upon the number of
dummy solute sites addéd.The HNC approach approxi-

The differential of this equation with respect ¢ds®

BoAp=p>, | dr{exd —Bu,,(r)+h, (1) =Cc.,(r)] mates the solvation free energy as a sum over all pairs of
“r sites of excess chemical potential terms due to each site.
—1—h,,(r)}C,,(r) Each such term is found from the product of the particular
site-site correlation function with the pair potential, with the
+(2m) 3 dkE {F‘ay(k) positions of all other sites being averaged over
a,y

1
~pap=p3 [ an [ At pu gl

-2 ﬁssr(k)éas(k)i(ysf(k)]5%7('()- 13 19

s,s’

Note that the terms in the brackets, respectively, vanish wheHowever although we may assume that the potential itself is
the HNC and RISM equations are satisfied lbyandc. A pair decomposable, yet the radial density of a particular site
natural decomposition afu is now evident. Namely, to pre- is correlated to the density of other sites in the same mol-
serve the invariant form of Eq13), we substitute the solu- ecule. When the angular dependence of this density is preav-

tions c to the HNC and RISM equations, respectively, into eraged in formingy,s, the accuracy of calculated free ener-
the two brackets in Eq12) and condense terms to write  gies is compromised. In an alternate solvation free-energy
expression, Ten-no treats the solvation free energy as arising

Ap= iE f 47rr2{—2cHN,c(r)[1+ha (1] from t_he pote_ntial energy, rather, of the entire solute mol-

2B &y “r 7 ecule interacting with solvent molecules

+[ N, (1124 (NEXMr)}dr, (14)
’ ’ ’ _ﬁAMPW:PJ dr1,2< fold)\

where cHNC satisfies the HNC equation ar®'SM satisfies

the RISM equation. The invariance satisfied by the expres-

sion for the solvation free energy implies that although the [—ﬁU(rl,z)G(fl,2§>\)]> , (17

direct correlation function being used may be approximate, O

yet our approximation can lead to only a minor error in our

calculated solvation free energy. where the average is taken over all angular orientations of
Upon examination of this expression for solvation freesolute and solvent molecules. Integration over the coupling

energy, its import becomes apparent: this decomposition aparameter is performed prior to decomposition into site-site

lows the data available for the direct correlation functionscontributions. “Partial wave” relations are then used to ob-

from the RISM and HNC equations to complement eachain the solvation free-energy expressfoR?

0,0,
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o p 5 NG plying by the matrix inversé» ! when solving the RISM
Au' “”=2—Z j477r {=2¢4, (N[1+hg,(r)] equationsee Eq(10)], the incongruity between the two ma-
“ trices @ and & is amplified to an error in the solution
+hoy (DO +h, (1) eRM(r) tdr, cRISMwhich can be as large as
where
R R a)RISM_ a)exacﬂ
he=[@s] *[hs,I[@,]17". (18 Cond&))<—”a)R|SM ) (19
Note that the second term in this integral substitutes for the
term and can be large enough to dominate at lkwThus it is
p 5 5 essential to correct for this discrepancy, or bridge function,
ﬁ% f477r [he(r)]odr By (r)=chiM(r)—clJ(r), by using an appropriate term

to incorporate it into the expression being used for solvation
in the expression foh ") [see Eq.(11)] and incorpo-  free energy. Note that we expect this bridge functiBnto
rates, through the matrices, structural information about have the following property: It should be largeskat0, and
both solute and solvent molecules. This second term is aljecrease rap|d|y to 0 at |argE’rwhere the relevant matrices
sent altogether in the Gaussian fluctuation expressiongor  are well conditioned.
Because of the thoroughness shown in the derivation of  puh and Haymet have used empirical methods to deter-

the partial wave(PW) free-energy expression when com- mine this bridge correction as a function of the variable
pared to the derivations of the HNC and GF expressions=h—c+u(®, where the potential energy functiom has

which make rather broad assumptions, the PW expression iseen decomposed as the sumu®+u(® of short-and
expected to yield the most accurate energies. We will confirniong-range components(*) andu(®, respectively. The fol-
this prediction with a comparison of these three methods inowing expression was used for this separation:

the results section, Sec. IV. For this reason, we take advan-

tage of the PW free-energy formulation for the results re-

. . 6 _ 6p*
orted in this paper. N o 1l/o, Bay(T)
e - 5 2250
1. Bridge-function corrections
It has been pointed out that it is in fact impossible towhere

simultaneously satisfy both the HNC and RISM equations.

The HNC equation is based upon topological reduction of

the diagrammatic expansion for the correlation function, pr= D paos., (20

However starting with the RISM equation, an attempt to im- aesolvent

pose a diagrammatic reduction leads to the diagrammatic

expansion ot as the sum of those diagramsl"imhat have no By making the approximation that bothand h are propor-
nodal circles. ThiS, however, is not consistent with the RlSMtiona| to the Coup”ng parametar, they modified the argu-
equation, but rather leads to more complex systems of equanent used by Singer and Chandler deriving their original
tions, such as the Chandler-Silbey—Ladanyi integrakxpression for solvation free energy to obtain the following

equations? It follows that no such topological reduction of expression for the bridge-function-corrected solvation free
the RISM equation can exist. Thus, in order to achieve acenergy?>26

curate results, it is essential to make an appropriate correc-
tion to the solvation free-energy expression using the bridge
function to account for the differences between solutions to 5 (HNC):LE f A2
. s ™

the HNC and RISM equations. 2B &y

By going about the solution of the RISM equation start-
ing from a prior knowledge oh, we obtain insight into +hiy(r)+hay(r)c5',/5'\"(r)
where the discrepancy betweeM andcHN¢ is most sig- 2h,(r)
nificant. At lowk, the matrices in the RISM equation are not - S—Zr)
only inexact in relation to the HNC equation, but also their ay
associated condition numbers convergectask— 0. It fol-
lows that the solutiort to the RISM equation is not at all By following the arguments used by Ten-no in deriving the
accurate at lovk, relative to the HNC relation. To see this, partial wave solvation free-energy expressiorit is ob-
consider the standard result of numerical analysis stating thaerved that the bridge-function-dependent term in the expres-
an upper bound to the relative erdk resulting from evalu-  sion above remains correct in the partial wave formalism.
ating the solutiorx=A"b to the matrix equatio®x=b is Duh and Haymet obtaineB = cR'SM—cHNC by running
given by condf)||E||/||Al|, where the matriE represents the simulations and RISM calculations, and then graphgd
error in the matrixA.?* Now let »***“ represent the matrix againsts.® An equation was then fit to the data to expr&ss
which, when substituted fab in the RISM equation, would as a function ofs, which was later improved by Duh and
provide consistency with the HNC equation. Then, in multi-Hendersort! The integral of this expression’fe’

—2¢INC()[ 1+ (1)]

dr. (21

Say
f ds'B,,(s")
0
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81 7 ) 9I 1+s | 1+55 for s=0
s 50° 20° 2\~ "3/ 125" 3) B
f ds'B(s')= . (22
0 1
- =s8, for s<0
6
|
The mean spherical approximatioMSA) closure, To investigate the significance of the resemblance be-
Buy()—1 tween the two functions plotted in Fig. 1, we analyze in more
g(r)=[1—e”" ] c(r)+ Bua(r)], (23 detail their difference. We first expreg{r) as the integral
was used for the RISM calculations in performing the fit just®Ver the coupling parameter,
described. We calculatex(r) by using the MSA to write 1
B(r)=J Bay(r,N)dN
Say(F)=hey(1) = Cyy (1) = BUZ)(T) 0
=g, (r)eﬁu( S0 —1, (24) J [eRM(r,N)—clN(r,n)TdA
and evaluating using the last expression in this equality.
) Our final solvation free-energy expression is thus given J [CRISMsr )+ bay(FN) — CHNC r,\)]dA
y
1 RISMsr HNC
Apu= 23 J 4 = 2NN [1+h,,(1)] =5C (r)+ [¢ay(r N)=Cpy (r,N)]dN,
ay
Ny (1) bay(r)]dr 26
where the last approximation is justified by the assumption
+(2m) 33— f 47k R, (k)APY(k) made above that bothandh are proportional to the coupling
2:3 @y 7 7 parameten,?® from which it can be inferred that?'SMs’~s
- . n —h is also approximately linear in the variable Thus the
RISMsr
oy (K)Ee, ™ (K) = 2hay (K Bay(K) ]dk, (29 jifference ak=0 between the two functions graphed in Fig.
where 1 can be approximated as the product of kw0 Fourier
transform of the sum of site-site components,
Ba}'( a'y(r) f dS Ba'y(s ) f [¢a7 r )\) CHNC(r )\)]d)\
andCRISMsr ARISM_ ¢ay [See Eq (6)]
Because the function & given by => HNcsr(r A)dA (27)
ay
2 hay(k)cR'S'\"Sf( k) with 25(0). Thelower value taken on dt=0 by the differ-

ence between these two functions compared to kKked

is invariant with respect to small changesciftSVs" and this
term is precisely a multiple of the contribution made to the
solvation free-energy integrand B§'SMS", we chose to show 35000 ]
this function in Fig. 1. We graphed this function using radial
distribution functions generated by tiB®ss Monte Carlo
simulation progranf® for methanol in water. Also shown in 25000 1
the same diagram is the contribution made to the solvation
free-energy integrand by the bridge functiBnThis contri-
bution is given by 15000

30000 A

- T, e )
~ X2, @, ()

20000

R R 10000 4
2, 20y (0B ar(K). o0
Note the shape of the latter function, starting outkatO 09
with a large value comparable to that of the contribution 4,
from ¢RISMS' and declining rapidly to zero. The rapid de- 0 1 2 3 4 5
crease in the bridge function coincides with and represents k
the ?ﬁeCt. of the rapid improvement of conditioning of the i 1. contributions to solvation free-energy integrand "' and B
matrices in the RISM equation &sis increased. for methanol in water.
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TABLE I. Free energies of solvatiofkcal/mo) of methanol using different  js basically, to introduce a charge separation spanning the
cutoff procedures. distanceR between the solute atom and the sphere’s bound-

Cutoff distance(A) Hard-sphere cutoff Soft-sphere cutoff ary (Table ). . ]
To correct for this error, a term must be added on, given

10.4 ~4.94 —4.44
10.6 ~1.06 ~4.55 by
10.8 0.23 —4.45 L a.q
11.0 1.86 —4.36 a+0,H0
11.2 0.08 —4.46 - ﬁ% R Ana(R), (29
11.4 -4.93 ~4.69
11.6 ~751 -5.07 Where
R R
Ana(R)=47rpf0 gao(r)rzdr—477pf0 gn(r)radr.
~RISMsr,

value taken on by the functiol ﬁm/(k)cay (k) may ) . o
therefore signify that the solutioci™NC to the HNC equation AN, represents the difference in coordination numbers for O

approaches the asymptotic limit ¢f somewnhat faster than and H atoms of water about solute site By making this
cRISM {oes. adjustment, we are subtracting off the effect of extra charge

from the boundary of the sphere surrounding each solute
atom. Equivalently, we can think of each sphere as being
2. “Soft” sphere boundary condition replaced by a “soft” sphere containing the entire water mol-
. -.ecules within its inner boundary, without truncation of these
Because the sphere centered around a solute site beifig" ' . .
P olecules at the boundary. We found that by adding this term

integrated over to obtain the solvation free energy may no . .
g gy may o the free-energy expression reasonable independence of the

contain stoichiometric numbers of water O and H atoms, ouj nerav from the intearation limit can be obtained. This i
calculated solvation free energy may depend upon the tot jee energy ro € Integration imit can be obtained. This 1S
seen in Table I, where, in the first column, the integration

charge of atoms included within this sphere. This lack of =~ " =" . :
g P limit is given, in the second column, the calculated solvation

charge neutrality will affect our calculated solvation free en_pee energy before any adjustment has been made, and in the
ergy, especially the integral over the outermost shell of wate, - . . P
gy, €sp y g third, the results of adding our adjustment to the values in the

molecules of the solute-site components,
second column.

252 A7 200 (DL N (D] N1 0y} B. Low- k extrapolation

Having addressed the issue of the exact form of the sol-
P vation free-energy expression to be evaluated, we now turn
- ﬁ; 47Tr2907(r)¢a7’ (28) to the problem of solving the renormalized RISM equation,
(10), for the solutioncR'SMs"
We have discussed how bridge functions can be used to
p ) NG correct for the inexact nature of the matrice; occurring in the
ﬁaEy Amr—2C,, (N[1+h,,(N]+h,,(r) ¢, (r} RISM equation at lowk. However the relative error in the
solutioncR'SMsT to the RISM equation resulting from the in-
occurring in the integrand of the solvation free-energy ex-accuracies irh must also be considered. The full numerical
pression(25). Such a component represents the total Couerror in evaluating the solution=A"1b to the linear equa-
lombic potential energy exercised on siteby the solvent tion Ax=b has been shown to satiéfy
molecules occupying this shell, and, in effect, all shells be-

of the term

yond this outermost one, and should equal 0 for an un- |AX] — cond A) IE N |AD 30
charged solvent. If this component is nonzero, then the effect || x| Al |Ib] )’
TABLE II. Free energies of solvatiotkcal/mo).
Bridge- Bridge
corrected corrected
Solute RISM/MC RISM/MC RISM/MC RISM/MC? Expt.
Acetic acid 2.92 -1.92 —4.84 -6.27 -6.7
Ammonia -1.94 ~3.44 -2.48 -3.16 -4.3
Ethane 11.2 6.37 2.67 1.30 1.8
Methylamine 3.76 0.59 -1.50 —-2.65 —4.6
Methane 0.95 -1.61 -0.16 -1.08 2.0
Methanol 0.66 -431 -3.34 —4.36 -5.1
Methanethiol 6.46 2.80 -1.23 -2.24 -1.2
TIP3P water —4.50 ~5.34 ~5.88 -6.27 -6.3

ANe used a lowk integration cutoff ofcRSMS" up to 5Ak.
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where, as above, the matrix represents the error in the It has been shown that the denominator in the above ratio is
matrix A. Therefore there is a second term in the upperequal topsoyenk Tx3, Wherex$ denotes the isothermal com-
bound for the relative error in that arises when multiplying pressibility of the pure solverit.
by the matrix inverse ' in solving the RISM equation The procedure just described can be applied only as long
[again, see Eq.10)], which must also be considered, ask is small enough so that adjacent rows and columns of
are roughly equal. For largdrfor which @ is still ill condi-
[Ae] _(lA&] _ [ ]lAR| tioned, some elements @ may be small enough so that
Wscondw)(w) +cond ) W : (D their replacement by 0 will produce better-conditioned ma-
trices, which can be used to replace the original matrices. For
| k very close to zero, rather than solving the RISM equation

dominate our solutio®R'SMS. To address this problem, we W& Can use a quadratic interpolation of the form
must modify& to a better-conditioned matrix. EMCM(k):(EMcw_(O))_ﬂLBkz, which is justified by the
We first note that our expression for solvation free en-l0W-k Taylor approximation of the sine function used in the
ergy, Eq.(25), can be approximated without knowing indi- SPatial Fourier transformation.
vidual site-site direct correlation functions at smralln fact In practice, we must address the problem of what limit to
at k=0, for all sitesa and ¥, pﬁa,y(k) represents the total set to the cor_1d|t|on numbers occurring m_the RISM_equatlon
fractional change in the number of solvent molecules in thd’€fore applying one of the procedures just described. The
entire three-dimensional space surrounding a solute moleculimber of digits of accuracy iais less than that i by as
compared to in pure solvent, and thus is independent of thBluch as the sum of the orders of magnitude of these condi-
individual sitese and y. For small positivek, we can make tion numbers. Therefore a condition number of 100 may
the approximation that values bfk) concur over a range of Seem rather high, especially considering that there are two

proximal sites. In that case all that is needed to find thdll-conditioned matrices occurring in the RISM equation.
solvation free energy are the terms, However the invariance of its expression allows the solva-

tion free energy to maintain stability versus the ill condition-
~ RISMST . RISV ing of the solution, and thus we found that the value of 100
2 ha‘y(k)cay (k)E<hay(k)>7( 2 Cuy (k)>1 is a reasonable maximum for permissible condition humbers
7 7 (32) of these matrices.
Note that the same invariance satisfied by the term

where the sum is taken over those sites for which values o}iayﬁw(k)(‘:s'ys'\"sr(k) in the integrand ofAx with respect to
h(k) approximately agree. The ill conditioning of the matrix the solution to the RISM equation is also satisfied by the
o results from the slow decay from the value of 1 of matrix term EMF\M(k)ﬁz‘;"(k), with respect to variations ifP".
elements proceeding away from the diagonal either along @/e can therefore apply methods similar to those just de-

row or a column. If sites are ordered so that consecutive site§riped to the evaluation (B‘fPW:[a)S]—l[ﬁS Mo,
Sv U v *

are neighboring to each other within the solute molecule, 14 test our inversion process, we first started with radial
'fpﬁn adjacent entrlefs hOf I:)r}:(e\b rrrl]atr_nx arfg cI(ésAe f|n Val}:’e' distribution functions calculated by stand-alone RISM/HNC
ese two aspects of the ehaviorofcandw, first, the - o then ysed these as input in the program we designed for

replacement .Of separate site-site valueg: ofith a sum of determining the direct correlation functions, and from these
such values in the free-energy expression, and, second, the . )

ST . . ] " the solvation free energy. In Fig. 2 we graph the same func-
similarity of neighboring entries of the matrix, allow the

dimensionality of the original RISM equation to be reduced,!on Ea,_yhav(k)CSL/SMsr(k) as was shown previously in Fig.
as the ill-conditioned matrixi> is replaced by a better- 1. The figure compares the function evaluated usimgm-
conditioned matrix with only one row and one column for iNg from self-consistent solution of the RISM and HNC
each group of solute sites being incorporated into the sunfduations to the same function wherés derived using our
This process is given in detail in the Appendix. method withh obtained from RISM/HNC. Three different
Thus although for mosk the evaluation of the term approximations in the lo-range were used. For the higher
S P, (KEXSMS(K) in the free-energy expression relies spectrum of values ok for which @ is ill conditioned, we

approaches 0 this geometry becomes decreasingly importaf€ro. This set of points is labeled by the serigs in the
and the focus on the solute molecule for this calculation caghart. At a somewhat lower range kifbecause the smallest
be broadened to encompass only groups of sites, so that agglues occurring iriv are now closer to 1, it becomes more
jacent pairs, and at still small&values groups of more than appropriate to use the matrix reduction procedure described
two sites, can be merged together and regarded as a singid®ove. These values kfare labeled by the seri¢2). Finally
site. Finally atk=0, ® becomes completely irrelevant to our for thosek values closest to 0, we used a quadratic fit of the
calculation of this term and we have form A+ BKk?, labeled by the serig8). Although we hope to
eliminate the large error term caused by the enlargement of
N £0) small errors inh by huge condition numbers, yet we intro-
> Cuy(0)= S‘j“‘—t (33)  duce by our modification o another smaller error term. If
ay 1+ phgopent0) this error term is adequately minor, then the two functions

At low k, we can expect, again, that this error term wil

Downloaded 15 Jul 2004 to 155.101.19.40. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2194 J. Chem. Phys., Vol. 121, No. 5, 1 August 2004 H. Freedman and T. N. Truong

40000 1= e from RISMNG {1/cond@)>0.01%. In case this condition was not met, all
35000 ‘x>‘<>\( _ < _ entries of the matrixo less than 0.2 were set equal to zero,
— = (SING ¢l GETiveRrirom RISWIHIC) the condition number was again checked, and this process
_— oA ; was continued until all elements of ill-conditioned matrices
S g @ less than 0.4 had been madg equa}I to 0 The next stgp was
200007 to reduce by a factor of 2 the dimensionality of all remaining
15000 - ill-conditioned matricesv. We used only one such reduction,
550 | although for larger molecules, further reduction by factors of
larger powers of 2 would most likely be advantageous. In the
=000 1 final stage, at small enoughso that either> remained ill
0 . W"'“"‘“ . . conditioned or else the matrjx was ill conditioned, we used
-5000 1 a quadratic fit such as was described above. To obtain
i 2 0yCay(0) in EQ.(33), we used the reference vafiéor the
0 1 2 3 4 5 6 isothermal compressibilityd of water at 298 K equal to

452410 2%Pa, or 1+ phegyen(0)= psoenk Tx>=0.062.

FIG. 2. Contributions to solvation free-energy integrand, for methanol inA similar teChmque was employed in solvmg fof* as we

L e - used to findcR'SMsT
water, from(a) the solutionc® to the RISM/HNC equations, an) the . ) ) ]
solution cR'SMs" derived fromh, whereh has been solved for using RISM/ When calculating the bridge function, the functien

HNC. Better-conditioned matriced were obtained by1) zeroing out all =h—c+u® was calculated using E(Ij24). The functions
elements of the matri% that were sufficiently close to zero, af®) reduc- seemed. for some intervals closerte 0. to assume values
ing matrix dimensionality. For serig8), we used a quadratic fit of the form ! N . .
A+ BK2. unreasonably large for our purposes in using this function to
determine the bridge function. We therefore reassigned a
value of 1 to this function whenever its value exceeded 1.
shown in Fig. 2 should almost overlap. In fact, we observe a  In carrying out the numerical integration for the solva-
close match between the two plots. tion free energy, radial distribution functions were cut off at
11 A. Because of the problem with low accuracy at srkall
values, we started the integration ovefrom a value ofk
=6Ak=0.876.

In this study, distribution functions were calculated by Stand-alone RISM/HNC equations were performed us-
Monte Carlo simulations at 298 K using tBesspackage’® ing the modified direct inversion of iterative subspace con-
The dimensions of solvent boxes used were large enough tgergence techniqu¥. For stand-alone RISM/HNC calcula-
contain solvent water molecules at distances of up16 A tions, the OPLS parameter set requires some small
from the center of any solute atom, and a periodic boundarynodifications. Namely, whenever the OPLS parameter set
condition was used. OPLS all-atom parameters were used férad assigned values of 0 to the Lennard-Jones parameters of
solutes and the TIP3P model was used for water in MC simueertain hydrogen atoms, these were reassigned nonzero val-
lations. Except for the case of solvated water for which conues ofe=0.046 ando-=0.401° This change was made in
vergence is reached much more quickly, solvated systemsrder to preclude the appearance of high artificial peaks in
were equilibrated for 12 10° configurations separated into the calculated radial distribution functions. To compare with
three batches of 4 10° configurations each, followed by av- the stand-alone RISM/HNC calculations, a few coupled
eraging over 2& 10° configurations run in seven batches of RISM/MC calculations were also repeated using this modi-
4x10° configurations each. For water, batches were ofied OPLS parameter set. The linear extrapolation procedure
250000 configurations. Calculated radial distribution func-mentioned below was performed without using a bridge cor-
tions were sampled at intervals of 0.04 A and were graduallyection or lowk integration cutoff, but instead continuously
smoothed to zero at distances exceeding 11 A. assigning cR'SMs(k) a constant value for alk=10Ak

The OPLS force field was also used to obtain the pair=1.46.
potential when solving foc from the HNC equation. This
force field represents the pair potential as a Coulomb poten-
tial with the usual 12-6 van der Waals interactions, and Usef; ResuULTS
the Lorentz—Berthelot mixing rules.

We used a water density of 0.03334/AThe Fourier Table Il gives solvation free-energy results obtained by
transformations for the RISM calculations were carried outrunning our coupled RISM/MC program for several test mol-
on a linear grid of 537 points, with zero aliasing to twice this ecules. The second-to-last column displays the results of our
range’ meaning that an additional 537 points were zerobridge-function corrected calculations found by using Eq.
filled. This gave a total interval length of 43 A, which was (25), for which we have applied the lowintegration cutoff
used to calculate values &f Three kinds of approximations described in the preceding section. Most of these results
used when solving the RISM equation ff'SMs" have been  show good agreement with experiment. The main exceptions
described above. Fér>10Ak=1.46, the problem of ill con- are methane and methylamine. However, part of the problem
ditioning was addressed by setting elementsvoless than  with these molecules may be attributable to the force field
0.1 equal to 0, and checking for the validity of the conditionitself. For example, calculated solvation free energies for al-

IIl. COMPUTATIONAL DETAILS
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TABLE IIl. Free energies of solvatiofkcal/mol).

28x 1¢° 32x10° 36x 10¢°

Solute configurations configurations configurations Averade

Acetic acid —6.27 —6.04 —6.50 —-6.27 = 0.23
Ammonia -3.16 -2.11 —2.09 —2.45 *= 0.61
Ethane 1.30 0.39 1.47 1.0 0.58
Methylamine —2.65 -2.07 —2.75 —2.49 = 0.37
Methane —1.08 —1.40 —1.46 -1.31 = 0.20
Methanol —4.36 -3.95 -4.71 —4.34 = 0.38
Methanethiol -2.24 -2.12 —2.54 —-2.30 = 0.22

@Average was computed from values corresponding to 28 million, 32 million, and 36 million configurations, and
the error represents the non-biased standard deviation from the average.

kanes such as methane are quite potential dependent, beiitighares this property with water. The average absolute error
contingent upon small differences in shapes and sizes of wder the molecules is now only 1.11 kcal/mol.
ter pockets. Concern about the need to check the reasonableness of
We also include in Table Il results where different op-the convergence and quality of simulations prompted us to
tions are turned off in order to see their relative importanceestimate the statistical error associated with our free-energy
in the calculated total free energy of solvation. In particular,results. To analyze the sensitivity of our results to the simu-
columns, respectively, display the total free-energy integralation length, we recalculated solvation free energies using
without including the bridge correction or any ldwintegra-  radial distribution functions averaged over eight or nine
tion cutoff, the same integral including the bridge correction,batches of &« 1 configurations each. Solvation free ener-
and this integral starting at the lokveutoff point but without  gies obtained using these 820 or 36x 1P configurations
any bridge correction. The values given in the second colare shown in Table I, along with those obtained using our
umn, corresponding to unmodified RISM/MC, in almost all original 28< 10° configurations. Average values from these
cases do not reflect the correct ordering of the solvation freéhree simulation lengths are given in Table 1l together with
energies of the eight molecules. Furthermore, these valudke statistical error, representing one standard deviation from
are all but one too positive when compared to the experimerthe average. These errors range in value from 0.20 to 0.61
tal values, with an average absolute error of 5.75 kcal/molkcal/mol. Smaller errors in calculated results can be expected

The functionEa,yﬁw(k)és'ys""sr(k) shown in Fig. 1 exhibits if simulations are run over longer time intervals.
a large maximum at=0. However the area under the curve ~ Table IV compares the results of the HNC, GF, and PW
corresponding t&k between 0 and about A® should not methods for the molecules methanol and water. It can be
contribute to the solvation free energy nearly as substantiallfeen that the partial wave approach produces values closest
as is calculated using unmodified RISM/MC, because thid0 the experimental ones, lying somewhere in between the

area is partially cancelled by the area under the curvéINC values, which are too positive, and the GF values,

%20, (K)Bo(K) also seen in Fig. 1. The former area Which are excessively negative. _
contributes a positive quantity to the energies in the second e have observed that if, instead of SOIY'QI%NFQG RISM
column, accounting for their excessively positive values. €duation at lowk, we simply linearly extrapolate asa

Because the bridge-function corrections are subtractefOnstant value at lovk, reasonable results can also be ob-
from the sum in Eq(25), the values in the third column of tained. In fact th!s was the proced.ure orlgmallly used to carry
Table Il are a great deal more negative than those in th@ut the calculations for our previously published restflts.

second column, and the bridge correction leads to valueshe similarity between our original and present results can

generally much closer to experimental ones. Nevertheles§€ eprI%ilgheAd as follows: A large part of the Idweontribu-
'to the solvation free energy is canceled by that

the ordering of most of the solvation free energies remain&on ofc™"
incorrect. made byB. By extrapolating this contribution at lok; we
Right aroundk=0, the accuracy of botﬁ(k) and B(k) are merely cutting off the steep rise in this functiorkasnds
is questionable, and so the effect of truncation starting at ©© O- If this extrapolation is carried over to stand-alone
=5Ak is shown in the fourth column. We have neglected theRISM/HNC calculations, then the results of these calcula-
bridge function, and so the values are again for the most paHons are likewise improved. This can be seen in Table V. In
too positive. The orders of water and acetic acid are reversed)® second column, we show the results of stand-alone
as are the orders of the pairs ammonia/methylamine and

methane/ethane. . .
. . .. . . TABLE |V. Free energies of solvatiotkcal/mo).
When the bridge function is included along with this g
truncation, most results move closer to experimental valueSolute Expt. ApHNe ApSF ApPW
the notable exception being methane, for which our calcu?ﬂp3P water 63 “510 o6 627
lated result becomes even more erroneously negative. ACetjgeinanol 51 5.73 ~8.00 _4.36

acid is now correctly predicted to be least solvated, although
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TABLE V. Free energies of solvatiofkcal/mo). large differenceB=¢&RISM—¢HNC i the direct correlation

RISM(PW)/HNC RISM(PW)/MC function, neark=0. The solvation free-energy expression
Solute RISMPW)/HNC (extrapolatefl  (extrapolatel Expt. must be improved to account for this difference, or bridge
Acetic acid 163 895 67 fu_nction. We used the_ expression for solvation free energy
Ammonia _297 482 —43 with a bridge correction developed by Haymet and co-
Ethane 7.45 0.55 1.83 workers. Our results demonstrate that much of the contribu-
Methylamine —-1.67 —7.04 —4.6 tion to free energy made by the large values taken on by the
Methane 5.37 187 20 integrand in the solvation free-energy expression in the range
Methanol —2.58 —6.19 —4.67 -5.1

Methanethiol 5 10 077 12 qf k close to O is c_anceled by the bridge-function contribu-
TIP3P water —717 831 590 6.3 tion of opposite sign. As our results demonstrate, careful
handling of this integrand at low can also be expected to
lead to improved absolute solvation free-energy values when
using the stand-alone RISM/HNC method. By inverting the
RISM/HNC calculations without US|ng the eXtrapolat|0n prO RISM express|0n foh |n terms OfC regu|ar|y worked W|th
cedure. In the same way as we observed excessively positi¥g one forc in terms ofh, we have obtained insight into the
values in Table Il when using unmodified RISM/MC, so alsosource of some of the difficulties associated with the stand-
the results seen here, with the exception of water, are alljone RISM/HNC method.

more positive than the experimental values. They are, more- Reasonable results were obtained by applying
over, in the wrong sequence. In the third column, we showR|SM/MC to a small set of neutral test cases. Many ques-
stand-alone RISM/HNC results improved by using the ex+jons remain concerning how the accuracy of the RISM/
trapolation procedure. It can be noted that this extrapolatiogjmulation methodology compares to the stand-alone RISM/
imprOVeS both the Ordering and the values of calculated SOlHNC approach, or to free_energy simulations. A|th0ugh our
vation free energies, remarkably. A few results of RISM/MCesults look good, yet some of these have significant errors
calculations using the modified OPLS parameter set and thgnd there is certainly room for improvement.

extrapolation procedure are given for comparison in the e expect that studies focused on searching for better-
fourth column, showing some improvement over the ex-quality bridge functions will lead to improvement of both the

trapolated RISM/HNC values. RISM/MC and the stand-alone RISM/HNC methods for cal-
Some representative radial distribution functions for am-cylating solvation free energy. In particular, the correct de-
monia in water are shown in Fig. 3. termination of the quantit¥, ,2h,,,(Kk) 8,.(k) neark=0 is
a large factor contributing to the accuracy of each of these
V. CONCLUSIONS two methods. Especially in the case of RISM/MC, further

. . . work directed towards the accurate evaluation of
We have derived an expression for solvation free energ)é (k¢ RISMsr(k) k=0 | ded.
¢ near is also neede

that is invariant with respect to small fluctuations in the cal-<« Way o
culated direct correlation function This allows the ampli-  On€ appea! of the RISM/simulation methodology is its
fication of small errors irh to large errors irER'SMS" by the simplicity, requiring only one MD or MC simulation, fol-

high condition numbers of the matrices occurring in thelowed by algebraic evaluation of the direct correlation func-

RISM equation at lovk, to contribute minimally to the error tion. from which a RISM solvation free energy can be cal-
in the solvation free energy. culated, without requiring any iterative solution of the RISM

and closure equations. We are in the process of performing
gn application of the RISM/simulation methodology to the
alanine dipeptide. Because this system has been studied so
widely, we will be able to turn for comparison not only to
experimental findings, but also to a wide range of theoretical
results. By examining in detail how best to accurately solve
for the direct correlation functions satisfying the RISM equa-
tion, we have provided a basis for extending applications of
the coupled RISM/simulation method to larger systems.

Condition numbers converging t®8 as k—0 magnify
discrepancies between the RISM and HNC equations to
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APPENDIX: REDUCTION OF MATRIX DIMENSIONALITY IN THE RISM EQUATION AT LOW k
The matrix reduction procedure used to solve the equation
[Au= Y] =[@u][E0, " @, + puh, ] (A1)

for cRISMs[see Eq(10)] at lowk is shown below. Note that as— 0, the matrixy,, converges to the 0 matrix. In the treatment
shown here, pairs of proximal solute sitee21 and 21 are merged into a single site in the approximatiog, , (k)
%G)ZU,U’(k)'

F(h—a Az A_ay..] = . R R R . =T ARISMsr ARISMsr  ARISMsi]
(h=%oo (h=%o1 (h=%)o2 1 Qg gy Bz @y - @os|| Coo Co1 Co2
A a A A A a N . . . . ARISMst  ARISMsr  ARISM
(h_7)10 (h_')’)ll (h_‘Y)lZ w10 1 w1y W13 W1g °°° W3sg Cj_() S C11 S C12 S
~ A A - - - - -~ ARISMst  ARISMsr  ARISMsr
(h=%)2 (h=%)2 (h=%)2 Wy Wy 1 wpz wps t was|| Cpo Co1 Co
oA ~oA ~oA ~ ~ ~ ~ ~ ARISMsr  ARISMsr  ARISMsr
(h=9)3 (h=%)a (h=%)g|=| @30 @z ©3zz 1 @34 -+ @3] Cx Ca1 C3,
I ~ ~ ~ ~ ~ 0 O O e o ARISMsr ARISMsr  ARISMsr
(h=%)a0 (h=Y)a1 (h=¥)s @i 04 G sz 1 @as | | Cao Car Ca2
R R R & & - 0 4 . ARISMst  ARISMsr  aRISMsr
(h-9s (-9)a (A-9)g| LO0 Cs @2 0= O 2 L] e eGP &5
Xoo Xoi Xoz
X| X10 X1 X12 (A2)
X20 X21 X22
1
(h=%)o0 (h=%)ox (h=%¥)o2 F 1 g ®ga  WosT]
(h=%)20 (h=%)21 (h=%)2 Wy 1 Wy s
(h=Yao (h=Pa (h=Y)ga| =] @a0 @22 1 - Qs
A ~oa rooa ) ) ) e 1
L (h=%)s0 (h=%)sax (h=7y)s] L ™0 Ts2 Tsa -
~ ARISMsr, ARISMsr ARISMsr, ARISMsr ARISMsr, ARISMsr-
Coo  TCio Coi~  TCyg Coz  +Cp
ARISMsr ;| ARISMsr  ARISMsr; ARISMsr ARISMsr; ARISMsr ~ ~ ~
Co  tCz Co +C3p Ca” +Cx Xoo Xoi Xo2
ARISMsr |, ARISM RISMsr | ARISMsr  ARISMsr, ARISM - - -
X[ Cao m g Cap o Car T Cap ot Cs || X0 X1 Xz (A3)
: : : X20 X21 X22
ARISMsr ARISMsr ARISMsr
Cso Cs1 Cs2 i

To better facilitate our solvation free-energy determination using the solaiSN, we implement this as

Con ron N I R R ~ = ARISMsr ARISMsr  ARISMsI
(h=%)o0 (h=%)or (h=%)o2 1 0 @gp 0 @y -+ || Coo ot Cop
0 0 0 0 1 0 0 0 . 0 é%sMsr éﬂSMsr é?ZISMsr
A A A A - - N ARISMst  ARISMsr  ARISM
(h=%)20 (h=%)21 (h=¥)2 @ 0 1 0 @y -+ @pl|| Cyp o Cor Cpp
0 0 0 lo o o 1 0 - 0 gRISMsr  gRISMsT  aRISWsr
(F=%a0 (F=Yam (A=Yg| | @0 O sz 0 1 - dus|| e ™™ e
(A= A=%a (P=%)e Lo 0 dg 0 g -+ 1| i gRISMsr  RISMst  gRISMsr
Xoo Xoi Xoz
x| X10 X11 X1z, (A4)
X20 X21 X22

where all nondiagonal elements of even rows and columns of the niathave been replaced with zeros, as well as all
elements of even rows of the mathx- %. Because the solutiotR'>MS" will now have all zeros in its even rows, our function
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