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Abstract

A new method for calculating the solvation energy of an arbitrary shape solute is presented. In this method, the solvent is
treated as a homogeneous dielectric medium with a cavity. The solvation energy is presented in the Hartree—Fock—Roothaan
form, which can be incorporated into both molecular orbital and density functional theories, as well as in the classical theory
using the distributed monopole approach. We found that this approach yields on the average of 10% additional CPU time
compared to the gas-phase calculations and an accuracy of better than 2.0 kcal /mol for neutral polar solutes but somewhat

larger for ions.

1. Introduction

Incorporating solvent effect into molecular orbital
or density functional theory has recently been receiv-
ing much attention due to its importance in under-
standing mechanisms of enzymatic and chemical re-
actions in solution. Although much progress has
been achieved in the semiempirical molecular orbital
and classical approach, in this Letter, we focus our
discussion on the developments of solvation models
within the framework of either ab initio molecular
orbital (MO) or density functional theory (DFT).
There exist two different approaches for including
solvent effect in quantum mechanical calculations
[1]. One is the supermolecule approach where a finite
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number of solvent molecules are treated explicitly.
The other is to utilize the dielectric continuum model
to represent solvent electrostatic behavior by a single
parameter, namely the dielectric constant €. Within
the dielectric continuum approach, only few methods
existed for calculating solvation energy for general
shape solute at an ab initio level [2-16] 2. In particu-
lar, the polarizable continuum model (PCM) by
Tomasi and co-workers [7] has been quite successful
in studying many phenomena and properties of sol-
vated systems in arbitrary shape cavities. Recent
attempts [2,5,8] to incorporate solvent effect within
the Poisson—Boltzmann formalism into density func-
tional theory (DFT /PB) have been reported and the
results are quite promising.

The above ab initio quantum mechanical methods

2 For reviews and more references see Refs. [17,18].
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for calculating solvation energy share one common
feature. That is the coupled iterative procedure for
converging the SCF wavefunction in the presence of
the solvent reaction field. That means the unper-
turbed (gas-phase) Hamiltonian was first solved. This
wavefunction is then used to calculate the solvent
reaction field by either solving the Poisson or Pois-
son—Boltzmann equation by the boundary element or
finite difference method. The calculated solvent reac-
tion field is then used as a perturbation for calculat-
ing a new wavefunction and then a new reaction
field. The procedure is repeated until the solvent
field or the total energy is converged. The nature of
this coupled iterative procedure warrants that compu-
tational demand for calculating solvation energy ei-
ther at the HF or DFT level will be several times
more expensive compared to gas-phase calculations.
Hoshi et al. [11] have proposed a different polariz-
able continuum model for an inhomogeneous dielec-
tric medium, which can be directly incorporated into
the molecular orbital theory and does not involve
such coupled iterative procedure. However, practical
implementation of this method has recently been
reported only at the semiempirical MO level [19].

In this Letter, we present a new approach for
incorporating solvent effect for an arbitrary shape
solute into the molecular orbital or density functional
theory. This work is motivated by the previous
semiempirical MO model of Klamt and Schiiiirmann
[20] which is based on a screening conductor theory
and where the solute electrostatic potential is mod-
eled by a distributed multipole method. The main
advantage of the present method is that the solvent
reaction field is included directly in the SCF proce-
dure, and hence the solute electron density distribu-
tion and the solvent reaction field are converged
simultaneously. This reduces the computational de-
mand significantly. We have implemented this
method so far into the HF and nonlocal DFT levels
of theory. To check the consistency of our quantum
mechanical results for solvation energies of 18 an-
ions, 17 cations and 17 polar neutral molecules, we
also present results from the classical treatment of
our method within the distributed monopole ap-
proach. We found that the present method can pro-
vide comparable accuracy in solvation energy with
the PCM model. This accuracy level, however, can
be further improved by optimizing the cavity size.

2. Theory

Consider a molecule with the charge density
Y. z2,8(r—R,) —p(r) (1)

situated inside the arbitrary shape cavity conductor.
Here z; and R; are values and positions of N
nuclear charges, and p(r) is electronic density. The
solvent reaction field is represented by the charge
density o (r) on the surface (S) of the cavity such
that the total electrostatic potential on the surface is
Zero

z; p(r') o(r)
& + d2r' =0,
Z fv r j; r

Zlr=RI Jylr—7| lr—r|
(2)

where r is on S. In the present study, the cavity
boundary is approximated by M surface elements
(tesserae with areas S,) by a boundary element
method. Surface density at each tessera is then ap-
proximated as a point charge, {q,}, located at the
center of that tessera, {¢,}. From the above approxi-
mations, we can define the following matrix ele-
ments [20]:

1 1
A, = dsds
“ SuSv'[s,,fsy“—r'l e
1
:m, for u#v, (3a)
4
A, =107 —, (3b)
Su
1 1 1
By=— [ —— ds= ——, 4
T APy y K Py )
1 p
cu=——/ ( ), d*r’ d*r
S, s | r—r|

= P g, (5)

and Eq. (2) yields a solution
"= -A"'(Bz+c), (6)

where q° and z are the vectors of surface and
nuclear charges respectively; A, B, and ¢ are M X M,
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M XN, and M X 1 matrices defined above. In the
case of a dielectric continuum, the total surface
charge is determined by scaling the screening con-
ductor total surface charge by a factor of f=(e—
1)/€ according to the Gauss theorem. In this work,
we adopt the same scaling factor for the surface
charge distribution,

(e-1)

Alternatively, these surface charges can be deter-
mined by variationally minimizing the solvation en-

ergy

q= ¢°=—fA"'(Bz+c). (7)

1
E(q)=2'B'q+ciqg+ 2—fq*Aq, (8)

(the dagger denotes matrix transposition) with re-
spect to q (see also Ref. [20]).

Such scaling would yield error of order €™ ! in
the solvation energy. For aqueous solution, the error
is about 1% in the solvation energy, which is compa-
rable to or less than errors from other sources such
as the boundary element approximation and the un-
certainty in atomic radii. In a separate study [21], we
showed that surface charges determined from Egs.
(6) and (7) converge much faster with respect to the
number of surface elements M than surface charges
calculated from the normal component of the total
electric field on the boundary as adopted in the PCM
model. Due to this rapid convergence, our method
requires several thousand times less CPU time to
reach the same accuracy in ¢ and E, than the PCM
model, and also it can give reasonably accurate
solvation energy for a solvent with a dielectric con-
stant as low as 20.

From the formula
E=E,+Es+E,_, (9)
for the total energy of the solute in a dielectric
medium, where E is the total electronic energy of
the solute, E,_, is the nuclear—nuclear repulsion
term, we can derive the Fock matrix elements for a
system in a dielectric medium. In particular,

oF oc
F,=——=F)—flz/BIA"' —
woap,, P,
dc
+c'A™ —|, (10)
P,

where F,, 0 is the gas-phase Fock matrix element,

ac .
aP aP (ZP,LLVL;LV)= v (11)

P, is the density matrix element, and

12
. 1
Ly, =— ,u,r_tu V. (12)
Thus,
H}, = -£'B'AT'L, (13)
and
= —fc'A7'L,, (14)

are the solvent contributions to the one and two
electron terms of the Fock matrix, respectively. The
total electrostatic energy of the whole system (solute
+ surface charges) is then given by

E=3) P, (H,+ G,,)—3f'BAT'Bz+E,_,,
uv

(15)
and the free energy of solvation can be approxi-
mately calculated as

AGg= (E+AGq,) —E°, (16)
where E° is the total energy of the molecule in
vacuum, and AGy, is the nonelectrostatic contribu-
tion (dispersion and cavity formation terms). In this
study, we estimated the dispersion and cavity contri-
butions, AG,, to the free energy of hydration from
a linear interpolation of the free energies of hydra-

tion for linear-chain alkanes as a function of surface
area (A),

AGp (keal /mol) = 1.321 + 0.0067639A( A2).

(17)
This approach is similar to that in the previous study
by Sitkoff, Sharp and Honig [22].

We have implemented the present solvation model
into both the MO theory at the HF level and the
nonlocal DFT method by modifying the GAUSSIAN
92 /DFT [23] program. However our implementation
also allows solvation energy to be calculated from
other ab initio methods available within the GAUSS-
IAN 92 /DFT program such as the MPn, CCSD, and
CI methods.

For classical treatment of the present method, the
gas-phase solute electrostatic potential is represented
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by a set of partial charges located at the nuclei. In
this study, these partial charges were calculated by
using the CHELPG [24] method. The classical elec-
trostatic solvation energy is then equal to the second
term in Eq. (16), where the nuclear charge vector is
replaced by the partial charge vector.

3. Computational details

To check the accuracy of the present method, we
have calculated free energies of hydration for 17
anions, 18 cations and 17 polar neutral molecules. In
this study, we used the solvent excluding surface [25]
with the solvent sphere of radius 1.4 A to define the
cavity boundary. The solvent excluding surface has
been found to give more accurate correlations be-
tween thermodynamic properties of solvated systems
and their cavity size [26]. We used the program
GEPOL93 [27] to generate surface elements with 60
points per each atomic sphere for solvation calcula-
tions. The atomic radii used to define the cavity are
1.16 A for hydrogen 1.5 A for hydrogen-bonding
mtro%en 2.2 A for non- hydrogen-bonding mtrogen
1.4 A for oxygen, 2.3 A for carbon, 1 7 A for
aromatic carbon, 1.97 A for sulfur, 2.35 A for phos-
phorus, 1.423 A for fluorine, and 1.937 A for chlo-
rine. These radii are modified slightly from those of
Rashin et al. [8], though they were not optimized for
the present solvation model in this study. Thus, we
can further improve the accuracy of the present
solvation model by optimizing the atomic radii. Such
step is currently under investigation in our lab.

Quantum mechanical calculations of dielectric
screening energies were carried out at both the HF
and nonlocal DFT levels. For DFT calculations, we
used the combinations of the Becke’s three-parame-
ter exchange [28] and Lee—Yang—Parr correlation
[29] (B3LYP) functionals. Geometries of all
molecules were optimized at the HF /6-31G * level.
Partial charges used in classical calculations of hy-
dration energy were also calculated at this level.

4. Results and discussion
4.1. Neutral molecules

Calculated hydration energies for 17 polar
molecules with different functional groups are listed

Table 1
Calculated and experimental free energies of hydration (kcal /mol)
for neutral molecules *

Compound AGep AGS  AGHF AGELYP AGE®
HF 152 -57 -72 -62 -56
H,0 154 -88 —-105 -9.4 -6.3
NH, 159  -69 -77 -171 -43
CH,Cl 187 -02 -11 -07 -0.6
CH,OH 180 —44 -55 -—45 -5.1
CH,SH 189 -05 -23 -22 -12
CH,CN 192  -46 -56 —47 -39
CH,NH, 183 —-38 —48 -—42 -4.6
CH,COOH 195 -80 -85 -67 —-6.7
CH,0CH, 200 -04 -—-17 -09 -19
CH,CONH, 197 =97 —-117 -96 -9.7
CH,COCH, 207 —41 -51 -34 -3.0
CH,COOCH, 214 —43 -50 —34 -33
CsH4N 200 —42 -63 -47 —47
C¢H;0H 209 -73 -90 -72 —-6.6
HPO, 184 —-119 -137 -89 —186°
H,P,0, 227 -348 -364 —30.7 —20.0°
RMS difference © 1.2 2.0 1.1

*AG(p stands for cavity formation and dispersion terms. The
superscript C on the AGg term is for classical, HF for Hartree—
Fock and B3LYP for the nonlocal density functional method.
Experimental data (expt) are from Refs. [30,31].

® Calculated at SCRF HF /6-311+ +G* * level [32].

¢ With respect to experimental data only.

in Table 1 with available experimental data [30,31].
Correlation plot between the calculated and experi-
mental results is shown in Fig. 1. Also shown in Fig.
1 are hydration energies calculated from the PCM
self-consistent reaction field (SCRF)/6-31G * level
with optimized cavity size for that model [33]. No-
tice that our DFT results yield a good agreement
with experimental data and about the same level of
accuracy as the optimum cavity size PCM model.
The HF hydration energies are consistently too low
by about 1 kcal /mol. The RMS differences between
the present classical, HF and B3LYP results for
hydration energy and the experimental data are within
the uncertainty of +2 kcal/mol. Furthermore, the
dipole moment of water in aqueous solution is pre-
dicted to be 2.48 D at the B3LYP level as compared
to the experimental value of 2.4 D. The consistency
between classical and quantum mechanical treat-
ments of our solvation model as well as their accu-
racy are particularly encouraging. It raises new pos-
sibilities for studying properties of solvated biologi-
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cal systems such as to calculate free energy of
solvation for large biological systems or to reduce
the number of water molecules required to com-
pletely solvate the system and bypass the periodic
boundary conditions in classical molecular dynamics
simulations.

4.2. Ions

Calculated and experimental hydration energies
for 17 cations and for 18 anions are listed in Tables
2 and 3, respectively. The correlation plots between
calculated and experimental data [34] are shown in
Fig. 2 for cations and in Fig. 3 for anions, respec-
tively. These results indicate that the present solva-
tion model can provide comparable accuracy with
the optimum cavity-size SCRF/PCM method [35].
Quantitatively, the RMS differences between the cal-
culated and experimental solvation energies for ions
are larger compared to the neutral case, in particular,
ranging from 3.4 to 4.4 kcal/mol for cations and
from 5.3 to 8.4 kcal /mol for molecular anions. Such
large differences are also observed for other solva-
tion models. For cations, classical, HF and B3LYP
solvation methods yield correct trends in solvation
energies of different methyl substituted cations. This
is quite encouraging, though larger differences with

0 T T T T T T T
+ HF & A4
r{ & B3LYP » 1
-2 [[| & Bachsetal 1994 & ]
= s 8
T -4 a ]
£ & 4
> A +4+
S +/ +
< -6 [ A s/ ]
b A
§ a /+ a
+
= - —
= -8 4
:2 *a
-10 [ ]
- +
L
_12 Il L L
-10 -8 -6 -4 -2 0

Experiment (kcal/mol)

Fig. 1. Comparison between calculated and experimental free
energies of hydration for neutral molecules. Bachs et al. 1994 is
Ref. [33].

Table 2
Calculated and experimental free energies of hydration (kcal /mol)
for molecular cations ?

Compound AGey, AGS  AGHF  AGEMYF AGEe
NH; 1.73 —-741 —-746 —745 =77
MeNH7 1.90 —65.0 —66.7 —66.8 —68
Me,NH; 2.05 —-589 —-60.7 —60.7 -61
Me,NH™* 2.18 —540 —557 -—-558 -57
MeCONHj 2.05 —-66.1 —69.0 —67.0 —64
C¢H;NHF 2.20 —58.7 —643 —632 —66
PH} 1.80 —-67.6 —69.6 —69.8 -7
MePH} 1.97 —-604 —62.7 —62.4 —64
Me,PH} 213 —-552 —-573 -—56.8 -55
Me,PH* 2.28 -51.6 —533 -—526 -50
H,0" 1.58 —-96.1 —985 —98.5 —102
MeOHZ 1.83 —-73.8 —-764 =770 —-83
Me,OH* 2.02 —-60.9 —62.7 —629 —68
C¢H;OH} 2.12 —-683 —768 —76.0 -67
SHY 1.69 —81.7 —862 —858 -85
MeSHZ 1.91 -669 —-71.2 -709 =72
Me,SH™ 2.09 —-572 -60.8 —60.4 -59
RMS difference 44 3.8 34

? Abbreviations are the same as for Table 1. Experimental data are
from Ref. [34]

experimental data were found for H,O" and its
substituted ions as compared to those of NH} , PH ,
SH; and their substituted ions. Such differences are
due to the uncertainty in the cavity size. The present
results for atomic anions are of particular interest.
The classical approach grossly overestimates the hy-
dration energies of atomic anions whereas the quan-
tum mechanical approach shows strong dependence
on the basis set used. For instance, adding diffuse
functions allows the solute electrons to move outside
the cavity, consequently, it lowers the solvation en-
ergy. The basis set dependent effects had also been
observed in previous studies [8,35] and require more
investigation.

4.3. Computational demands

Since solvent effect is included directly in the
Fock matrix, the CPU time required to converge the
solvation energy calculation using the present method
is substantially less than that using the coupled itera-
tive procedure. In fact, we found that on the average
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Table 3

Calculated and experimental free energies of hydration (kcal /mol) for atomic and molecular anions 2

Compound AGp AG§ AGEF AGELYF AGEP

atomic anions

H~ 143 —139.9 —-111.3 -111.7 -87
631+ G*) —-80.4 -78.1

F~ 1.49 —-113.7 —-111.1 -111.1 -105
(6-31+G*) —-102.0 —-97.7

ClI~ 1.64 —83.0 -77.4 =776 =175
6-31+G*) -73.0 -71.0

molecular anions

OH~ 1.51 —118.2 -113.8 -112.1 -104
SH™ 1.66 -82.1 —-175.6 -75.9 —74
NH; 1.56 -110.9 —103.6 -102.0 -93
PH; 1.80 -67.9 —65.2 —65.5 —65
HO; 1.60 —106.0 -101.4 —-101.5 -99
NO; 1.76 —-76.4 -753 -73.7 -70
N; 1.75 —78.2 -72.7 -725 -72
HC; 1.80 -71.7 -77.3 —-76.8 -7
CH,0" 1.78 —-83.0 —87.7 —-785 -93
CH,S™ 1.89 -75.2 —74.0 -73.6 -77
NOj; 1.77 —75.4 -71.1 -70.7 —63
CH,CN~ 1.85 -74.1 —69.5 —68.7 -73
CH,CO; 1.94 —-783 -772 —74.4 -75
CH,COCH; 2.00 -176.7 —74.2 -72.1 -79
C¢H 0~ 2.07 -72.0 -71.0 —66.0 -70
RMS difference ° 8.4 5.3 6.2

* Abbreviations are the same as in Table 1. For atomic anions results obtained with the 6-31 4+ G* basis set are also presented.
Experimental data are from Ref. [34].
b Only for molecular anions.

40 [T T T T -60 [ S A B UL B
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~ + >
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= i x 7 . < -9 [ ]

2 -80 [ R . 4

g - o

= 3 A = -100 [ & B

-90 ] ’ $
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-1 .Io | L | Il 1 -.' 20 L L L | 1
-110 -100 -90 -80 -70 -60 -50 -40 -120 -110 -100 -90 -80 -70 -60
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Fig. 2. Comparison between calculated and experimental free Fig. 3. Comparison between calculated and experimental free

energies of hydration for cations. Orozco et al. 1994 is Ref. [35]. energies of hydration for anions. Orozco et al. 1994 is Ref. [35].
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of all test cases, the solvation energy calculations are
about 10% longer in CPU time compared to the
gas-phase calculations. Due to the localizing electric
field created by the surface charges, solute wave-
function sometimes converges faster (with a smaller
number of SCF cycles) than if it is in vacuum. As a
result, we found that calculations for solvated
molecules sometimes required less CPU time that
that for free molecules.

5. Conclusion

We have introduced a new approach for incorpo-
rating solvent effects into the classical, ab initio
molecular orbital and nonlocal density functional
theory frameworks. The present method can provide
accurate solvation energy for systems in a dielectric
medium with a high dielectric constant such as water
and is in comparable accuracy with the well-known
PCM method though computational demand is sig-
nificantly less. Hydration energies for a number of
ions and neutral polar molecules calculated at the
classical, HF and B3LYP levels of theory are in
good agreement with experimental data. The results
so far are very encouraging, however, more work is
required. In particular, the effects of basis set and
different DFT functionals on the solvation energy are
currently under investigation. In addition, optimiza-
tion of the cavity size to improve the accuracy of the
present method as well as implementation of analyti-
cal gradients to study the solvent effects on the
structure and spectroscopic properties of a solute in
aqueous environment, and incorporation of more ac-
curate treatments for the dispersion and cavity for-
mation terms are also being developed in our lab.
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