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We present equations for generalized-normal-mode vibrational frequencies in reaction-path 
calculations based on various sets of coordinates for describing the internal motions of the 
system in the vicinity of a reaction path. We consider two special cases in detail as examples, in 
particular three-dimensional atom-diatom collisions with collinear steepest descent paths and 
reactions of the form CX, + YZ- CX, Y + Z with reaction paths having C,, symmetry. We 
then present numerical comparisons of the differences in harmonic reaction-path frequencies 
for various coordinate choices for three such systems, namely, H + H, -, H, + H, 
O+H,-tOH+H,andCH, +H, + CH4 + H. We test the importance of the differences in 
the harmonic frequencies for dynamics calculations by using them to compute thermal rate 
constants using variational transition state theory with semiclassical ground-state tunneling 
corrections. We present a new coordinate system for the reaction CH, + H, that should allow 
for more accurate calculations than the Cartesian system used for previous reaction-path 
calculations on this and other polyatomic systems. 

I. INTRODUCTION 

In many cases, the atoms involved in typical chemical 
reactions explore only small-amplitude deviations from a 
minimum-energy path (MEP) through nuclear coordinate 
space. Thus, many workers have attempted to treat such 
reactions by using an explicit reaction path.‘-34 However, 
the choice of coordinate system is very important for making 
such calculations practical and accurate. 

In choosing the coordinate system, the critical issue is 
the definition of the reaction coordinate. Along the reaction 
path, the reaction coordinate s is uniquely defined as the 
negative or positive distance from the point on the reaction 
path to the saddle point configuration. For geometries off 
the reaction path, definition of the reaction coordinate re- 
quires mapping the geometry onto the reaction path and this 
mapping is not unique. As a simple example, consider the 
definition of the reaction coordinate for the collinear reac- 
tion A + BC+AB -t C. Figure 1 displays a schematic of po- 
tential energy contours for the reaction in mass-scaled co- 
ordinates; in particular,‘* x is the distance of A from the 
center-of-mass of BC and y is the BC distance scaled to the 
same reduced mass as thex motion. The conventional defini- 
tion of the reaction coordinate for a geometry x,,y, not on 
the reaction path is to map x0 y0 onto the closest point on the 
reaction path (the straight line in Fig. 1). An alternative 
choice is to map x,y onto the reaction path along arcs which 
intersect the reaction path at right angles. Although ques- 
tions arise as to whether the latter choice of reaction coordi- 
nate may provide a practical or accurate computational 
scheme, this does illustrate that a geometry off the reaction 
path can be mapped onto two distinct values of the reaction 
coordinate s. 

Two particular choices of reaction coordinate that are 
both based on the minimum-energy path (MEP) through 
mass-scaled coordinates have been widely applied to atom- 
diatom reactions in which the MEP is collinear. In both 
cases the reaction coordinate for arbitrary collinear geome- 
tries is defined by the conventional prescription outlined 
above-mapping the geometry onto the closest point on the 
reaction path. However, for bent geometries the two defini- 
tions differ. In one choice the value of the reaction coordi- 

Y 

X 

FIG. 1. Illustration of a possible ambiguity in defining the reaction coordi- 
nate for geometries not on the minimum energy path (MEP). Potential 
energy contours are displayed in mass scaled and skewed coordinates (see 
text). The heavy line is the minimum energy path. Two possible mappings 
of the geometry (x,,y,,) are displayed: a straight line segment connecting 
the geometry with location s on the MEP and an arc connecting the geome- 
try with the location s’ on the MEP. 
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nate is fixed when the triatomic is bent with constant AB and 
BC bond distances [Fig. 2 (a) 1. In the other choice s is fixed 
when the triatomic is bent along generalized normal modes 
consisting of linear combinations of mass-scaled Cartesian 
displacements from the reaction path [Fig. 2 (b) 1. The goal 
of the present paper is to compare these choices of coordi- 
nate systems in detail and to show by example how to extend 
the former to a more general class of reactions involving 
more than three atoms. 

H + H, +H, + H, (RI) 
O+H,-+OH+H, WI 

and 

We will place particular emphasis on the harmonic ap- 
proximation for small-amplitude vibrations in the vicinity of 
the MEP. The harmonic approximation for small-amplitude 
vibrations in the vicinity of a potential minimum is of course 
well known in infrared spectroscopy. In that case one begins 
with either internal coordinates or Cartesian coordinates, 
truncates the expansion of the potential at quadratic terms, 
and transforms to a set of normal coordinates that are un- 
coupled in the kinetic energy and simultaneously-through 
quadratic terms-in the potential energy. The uncoupled co- 
ordinates are the normal modes, and they are associated with 
a unique set of frequencies. Although the initial coordinate 
choice does not affect these frequencies, it is very significant 
for treating higher-order terms in the potential energy, for 
large-amplitude vibrations, and for vibration-rotation cou- 
pling. 

CH, + H, --XH, + H (R3) 
and we compare the numerical results for the harmonic fre- 
quencies. We also test the importance of the different choice 
of reaction coordinate on calculations of thermal rates with- 
in a reaction-path framework using variational transition 
state theory with semiclassical adiabatic tunneling correc- 
tions. Finally, a discussion, summary, and conclusions are 
presented in Sec. V. 

II. THEORY 
We begin by defining the MEP in mass-scaled coordi- 

nates. The mass-scaled coordinates are defined by 

r1 = (m,/p)“2x”, (la) 

r2 = (m,/~)“~y,, (lb) 
. . . 

We will demonstrate in the present paper that the har- 
monic approximation to the local vibrational motion on the 
MEP has a significantly greater dependence on the coordi- 
nate choice at a nonstationary point than a stationary one; in 
particular, even the harmonic frequencies are coordinate de- 
pendent as a consequence of the fact that the gradient does 
not vanish at the origin of the expansion.23 

In Sec. II we present a general mathematical framework 
for defining reaction-path coordinate systems and for calcu- 
lating the dependence of harmonic reaction-path frequen- 
cies on coordinate choice. In Sec. III we explicitly compare 
the Cartesian and bond-length-bond-angle choices for 
atom-diatom reactions in this framework, and we extend the 
latter choice to reactions of the form 

r3N = (mN/,u)“‘zN, (ICI 

where mA , m B ,..., m N are atomic masses, x, , yA , and z, are 
Cartesian coordinates of atom A, and /I is an arbitrary mass, 
which will be called the reduced mass. Then the MEP is 
defined as the path of steepest descents through the mass- 
scaled coordinate system starting at a saddle point. If 
r = a(s) at point s on the MEP, and r = rf at the saddle 
point-which will be taken as the origin of the MEP, i.e., 
s = O-then the MEP satisfies 

s== +v, 

with initial conditions 

(2) 

a(0) = r+, 

where 
(3) 

CH, + XY-+CH,X + Y, 
where the reaction path has C,, symmetry. In Sec. IV we 
present illustrative applications for the reactions 

l \ I 
‘\ \ I’ %Ks ‘*, ,’ 

(a) (b) 

FIG. 2. Bending motions along a curvilinear bend coordinate correspond- 
ing to constant ABand BCbond lengths and also along a generalized normal 
mode. Part (a) shows the mapping of a bent geometry onto a collinear ge- 
ometry in which the bond lengths are kept constant. Part (b) depicts the 
mapping ofa bent geometry to the collinear MEP alo,ng straight-line Carte- 
sian displacements. 

v= - V,V/IV,Vl (4) 
and Vis the potential energy. The coordinate s is defined on 
the MEP as the signed distance along the MEP. In addition 
to s, the potential energy depends on 3N-7 other internal 
coordinates. (By definition, any internal coordinate remains 
unchanged when the molecular system rotates as a whole.) 
The other internal coordinates, excluding s, are denoted ql, 
q2,...,qF- 1, and they vanish by definition along the reaction 
path. In addition, we define qF = s; and we let 
q = (4,4?2 ,...,qF) denote the complete set of internal coordi- 
nates. We denote the momenta conjugate to q as p. Any 
derivative of the form df/dqj should be interpreted as re- . . 
w-w (II 9--24i- 19 qi+ 19-, qF be held fixed. This includes 
Jf/as, which should be interpreted technically as df/dq,. 
We neglect vibration-rotation coupling and thus all further 
analysis is done without reference to overall rotations and 
translations. In internal coordinates the nonrotating classi- 
cal system is governed by the Hamiltonian: 

H=fiG,(q)p,p, + f’(q), (5) 
‘J 
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where the coefficient of momentum coupling for an arbitrary 
internal coordinate system is3’ 

G, = $- tvrqi ).tvrqj 1. (6) 

It is particularly convenient if the coordinates q are de- 
fined such that three conditions hold: 

(i) All coefficients G, of cross terms pipi, ifj, should 
vanish on the MEP. 

(ii) The only linear term in the expansion of the poten- 
tial energy in a Taylor series at a point so on the MEP should 
be proportional to (s--s0 ) . This requires 

dV 

( >I z 
= 0, i= 1,2 ,..., F- 1. 

r = S(S) 

This is clearly equivalent to 

ar 
( >I 

av-0 
ig -27 r = 8(S) 

and, hence, by Eqs. ( 2) and (4)) to 

( II ar da 
^ o-=0; 

idqil Ir=a(s) ds 

(7) 
i,j= 1,2 ,..., F- 1. (14) 

Except at stationary points of the potential, the F matrix 
(8) defined by Eq. ( 11) can therefore be significantly altered by 

changes to the functions bfl (s) = b,vj (s). The calculation of 
harmonic frequencies requires diagonalization of the (F- 
1) X (F-l) submatrix of the GF matrix in the vibrational 

(9) space where G is obtained by evaluating Eq. (6) on the 
MEP. At stationary points, the second term of Eq. ( 14) van- 
ishes and thus the frequencies are invariant to the choice of 
coordinate system. 

in other words, the vibrational coordinates should be locally 
orthogonal to the MEP. 

(iii) The quadratic potential coupling of the reaction 
coordinate to the vibrational coordinates should vanish, i.e., 

J2V - = 0, ^ ^ i = l,..., F- 1. (10) 
dq, ds 

This is easily proved by differentiating Eq. (7) with respect 
to s. As a consequence, the Wilson G and F matrices3’ both 
decouple into an (F-l > x (F-l ) vibrational submatrix and a 
1 X 1 reaction path element. 

cj(so)= AT- 
( > aqi&j %' 

In practice, there are additional complications. One is 
that the effect of anharmonicity depends on the coordinate 
system, and the coordinate systems that are most convenient 
for separating vibrational motions from rotations may not 
lead to particularly accurate representations of the potential 
when truncated at quadratic (i.e., harmonic) terms. Thus, 
one may wish to consider vibrational coordinates for which 
the separation of internal motions from rotations is more 
difficult or only approximate. When we wish to refer to vi- 
brational coordinates that are invariant under rotations, we 
will call them internal coordinates; when we refer to vibra- 

(11) tional coordinates without this qualifier, we will include the 
possibility that they may be only approximately separable 
from rotation. In the following sections, we explore some 
practical treatments involving such coordinates. 

Next we consider the vibrational submatrix of F, i.e., 

where q, ,..., qi _ , , qi + , ,..., qF are held fixed in any derivative 
df/ilq,, and the subscript in Eq. ( 11) means that s is held 
fixed at the value so. The potential in the vicinity of a point so 
on the MEP may be written 

uq I p"*tqF- 1 JO 1 = 'MEP ('0) + + $: y$' I;;j(SO)qjqj* 
1 

III. HARMONIC FREQUENCIES FOR VARIOUS 
COORDINATE CHOICES 

(12) 
Ill A. Atom-diatom reactions with a collinear MEP 

First we consider two coordinate systems for atom-dia- 
First we note that, to assign natural collision coordi- 

nates to a point off the MEP, weJirst assign s, then the vibra- 
tional coordinates. For a given definition of s, including the 
definition of s off the MEP, the frequencies are independent 
of the choice of the vibrational coordinates, as long as the 
latter are orthogonal to the MEP at q = (O,...,O,s,) .23 (The 
GF matrix undergoes a similarity transformation when it is 
transformed from one set of vibrational coordinates to an- 
other provided that the reaction coordinate s is kept un- 
changed.) However, the frequencies do depend on the defin- 
ition of s for points off the MEP. For example, given a global 
definition of s, suppose we change it in the vicinity of the 
MEP as follows: 

F- I F- 1 
SrcS-I- C C bijts)qiqj +O(qf)* 

1 i 
We note that the linear term is missing in Eq. ( 13 ) because 
the first derivatives of s and s’ with respect to r coincide at 
q = (O,...,O,s) and we also note that the b matrix is symmet- 
ric because of the symmetry of mixed second derivatives. 
Since the only nonzero first derivative of the potential on the 
MEP is that with respect to s one finds23 

f aZV \ I 
\ %i%j 1s’ I q = (O,...,O,s’) 
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tom reactions (A + BC+AB + C) with a collinear MEP. In 
both cases, we use the same definition of the reaction coordi- 
nate s and the transverse stretch coordinate q, for all ABC 
collinear geometries. For bent geometries, however, the two 
definitions of s differ. In the first definition, s is fixed when 
the system is bent with constant A-B and B-C bond 
lengths.3*20 This is called the bond-length reaction coordi- 
nate sBL. In the second definition, s is fixed when the system 
is bent along a Cartesian generalized normal mode.2’ (Note: 
coordinates defined as a linear combination of Cartesians or 
mass-scaled Cartesians are also called Cartesian.) This is 
called the Cartesian-vibration reaction coordinate, scv. The 
two types of bending motion are illustrated in Fig. 2. To 
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define the Cartesian coordinates, linear configurations are 
placed along the z axis. 

In previous calculations two sets of definitions of the 
doubly degenerate bending coordinates qza and qzb have 
been used. First, a pair of bending angles measured in theyz 
and xz planes of a rotating frame have been used.3’20 Second, 
the Cartesian generalized normal modes have been used.2’ 
The bending angles are examples of curvilinear vibrational 
coordinates since they cunnot be written as linear combina- 
tions of Cartesians. 

Because the bond-length and Cartesian-vibration reac- 
tion coordinates, sBL and scv, are chosen to coincide for lin- 
ear A-B-Cconfigurations lying along the z axis, they lead to 
the same stretching frequency. However, the fact that they 
differ for nonlinear geometries manifests itself in a notice- 
able difference in bending harmonic frequencies-the sub- 
ject of our present discussion. The difference between the 
harmonic frequencies comes from the necessity to evaluate 
second derivatives of the potential with different variables 
fixed. For example, in the bond-length reaction-coordinate 
system the AB and BC bond lengths are fixed, whereas in the 
Cartesian-vibration system, the derivatives are taken subject 
to the constraint of a fixed scv. Below we compare analytic 
expressions for the bending harmonic frequency evaluated 
along the same reaction path but using three different reac- 
tion-coordinate systems. The first two are prescriptions pre- 
viously found in the literature, namely, (i) the intrabond 
angle combined with the bond-length reaction coordi- 
nate3*20 and (ii) the coordinate system equivalent to the 
Miller-Handy-Adams description,2* which is equivalent to 
using the Cartesian-vibration reaction coordinate combined 
with the Cartesian bending coordinate. Another reaction co- 
ordinate, defined via the Eckart-Sayvetz conditions36*37 and 
referred to as the least-squares reaction coordinate sLs,23 has 
some similarities with the Cartesian-vibration reaction coor- 
dinate and is utilized in Sec. III A 3 in combination with the 
intrabond angle. We will explicitly demonstrate the differ- 
ence between the harmonic bending frequencies evaluated 
by means of the first two sets of variables and we will show 
that the latter two choices (i.e., those Sets. III A 2 and 
III A 3) give the same frequency (in agreement with the 
results of Ref. 23 that the harmonic frequencies evaluated at 
fixed values of the least-squares reaction coordinate with any 
choice of vibrational coordinates coincide with those calcu- 
lated using the Miller-Handy-Adams projection tech- 
nique) . 

Ill A 1. Bond-length reaction coordinate and intrabond 
angle 

We start by evaluating the bending harmonic frequency 
by means of the bond-length reaction coordinate. This coor- 
dinate, sBL, is a function of bond lengths only. It is defined on 
the MEP as the signed distance along the path with s = 0 at 
the saddle point. Then s is fixed when the system is bent with 
fixed bond lengths. [For a complete mathematical defini- 
tion, one may use the bond-length scattering coordinates 
given in Eq. (22) of Ref. 38 and the relationships given by 
Marcus in Eq. (7) of Ref. 5 1. We describe bending vibra- 

tions by the deviation S n- - @ from linearity, where @ is 
the angle between the A-B and B-C bonds, and we use the 
second derivative of the potential with respect to S or, equiv- 
alently, with respect to Cp atjixed values of the bond lengths. 
We thus find35 

[d=(~)]~ = G,, (SF,, 01, 
where 

(15) 

G,-,‘(S) = (~2/ro)(R~~RRZBC)I.=a(s), (16a) 

7678 Natanson eta/.: Reaction-path dynamics 

(16b) 

Ei=(m,m,m,/M)“2. (17) 

R BA 9 RBC, and RCA are the AB, BC, and CA internuclear 
distances, M is the total nuclear mass, and Z, is the largest 
principal moment of inertia evaluated along the MEP. 

IO = (m,m,R iA f m,m,R i3c \ 

+mAmcR~A)/MI,=.l.7,. (18) 

In Eq. ( 16b) we use the fact that sBL is a function only of the 
bond lengths so that holding sBL fixed is equivalent to hold- 
ing R, and R,, fixed. As all the reaction coordinates con- 
sidered in this paper coincide at each point along the MEP, 
we denote them simply as s there. Note that the harmonic 
bending frequency evaluated as above along the collinear 
reaction path coincides with that used in earlier work by two 
of the authors2’ who treated bending vibrations as a doubly 
degenerate normal mode (which is a superposition of bend- 
ing motion and overall rotation). If the bending motion is 
treated as a centrifugal oscillator,34*39 one obtains the same 
harmonic spectrum. [Alternatively, we can use Eqs. ( 16a), 
(17), and (18) to write 

[dLw]2= [-++--&+& 
A BA c BC 

X( RBt;Bc )‘]&a (s), (19) 

which is clearly equivalent to the version we have used pre- 
viously20 for collinear MEPs.] 

For comparison with other choices of reaction coordi- 
nate, it is convenient to assume that the potential Vis a well 
defined function of the three interatomic distances R,, 
R Bc, and RcA * Derivatives of the potential with respect to 
the nuclear Cartesian coordinates rd are obtained from de- 
rivatives with respect to the interatomic distances by the 
chain rule. The resulting expressions are rigorously correct 
even for linear configurations where the interatomic dis- 
tances become redundant. The use of the interatomic dis- 
tances as an intermediate set of internal variables makes it 
possible to represent the second derivatives of the potential 
with respect to the Cartesian coordinates in a very compact 
form as shown below in Sec. III A 2. To facilitate relating 
the final expressions for the bending frequencies evaluated in 
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different sets of coordinates, the second derivatives on the 
right side of Eq. ( 16b) are given in terms of the first deriva- 
tive of the potential with respect to R, at fixed values of the 
bond lengths R, and R Bc by the following expressions 

($$)R~,.R.~ = (~),,,~f%-f%&c 

+ (~)R~.,R~.(%I~..R~~ 

(20) 
where the C.4 bond length is related to the bending angle by 

R ;A = R iA + R & - 2R, R,, cos a. (21) 

The first derivative of R,, with respect to @ vanishes in any 
linear configuration so that 

and hence 

[wjjLW2] = -$ [R R1 R 
BA BC CA 

x(E)R~,~~~.I Ilcacsj* (23) 
We immediately conclude that the right side of Eq. (23) is 
positive whenever the interaction between atom A and C is 
pairwise repulsive. Therefore, simple potential models with 
end-atom pair repulsions, such as the BEBO” and 
RMBEBO’O’“’ models, will always give real bending fre- 
quencies in the bond-length coordinates. 

Ill A 2. Cartesian-vibration reaction coordinate and 
Cartesian bending coordinate 

The bending frequency in the Cartesian-vibration reac- 
tion coordinate system can be obtained most conveniently by 
the prescription of Miller, Handy, and Adams.2’ The fre- 
quencies for the vibrational modes orthogonal to the reac- 
tion coordinate are found by first projecting out infinitesimal 
rotations and center-of-mass translations before diagonaliz- 
ing the mass-weighted Hessian matrix. For the triatomic re- 
action with collinear MEP, the problem is greatly simplified 
because the Hessian matrix and projection matrix can be put 
into block diagonal form with three 3 X 3 submatrices. To do 
this, we choose our Cartesian system so that for collinear 
geometries along the MEP the atoms are constrained to lie 
along thezaxis withz, (s) <z,(s) <z,(s) and with thecen- 
ter of the mass at the origin, i.e., 

[To derive Eqs. (27) and (28), we first differentiated the 
potential with respect to each intratomic distance at fixed 
value of two others and then computed the second deriva- 
tives of the appropriate distance with respect xd, taking into 
account that the first derivitives of R,, with respect to xd 
vanish in linear configurations. ] At the saddle point or equi- 
librium geometries, diagonalization of KX will yield two zero 
eigenvectors corresponding to center-of-mass translation 
and rotation and the eigenvector corresponding to the bend- 
ing vibration. For arbitrary points along the MEP, it is nec- 
essary to constrain the bending motion to be orthogonal to 
the center-of-mass translational and infinitesimal rotational 
motions. The normalized eigenvectors for the center-of- 
mass translation and rotation are given by 

ud,, -ds, d = A,B,C, (30) 

ud,2 (s) =,,mz&), d = A,B,C, (31) 
and the eigenvector for the bending motion can be construct- 
ed by requiring it to be orthogonal to u, and u2, 

u,(s)=u2(s)Xu,. (32) 
Substituting Eqs. (30) and (3 1) into Eq. (32) gives the ele- 
ments of the normalized vector uj 

c mdzd (s) = 0. (24) 
d T A.B.C 

ud.3 (s) = 
J 

E[z,” (s) -z,‘(s)], 0 
(&Cd”) = (A,B,C),(B,C,A),(C,A,B). 

(33) 
The Hessian is now block diagonal in x, y, and z with the 
reaction coordinate and stretching vibrational motions in 
the z block and the doubly degenerate bending motions in 
the x and y blocks. 

The bending frequency is then obtained from the expression 

P[47 (s)]~ = [u,(~)]~K%)u3 (~1. (34) 
Substituting Eqs. (27)-( 29) and (33) and using the fact 
that for collinear geometries R,, s = (zd ‘d x ( yields 
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J%(S) =(g)lr-.,sj, d,d’=A,B,C, (25) 

where a derivative with respect to a Cartesian coordinate 
implies that all other Cartesian coordinates are held fixed. 
To compare with the fixed-bond-length bending frequency, 
it will be most convenient to express the Hessian matrix in 
terms of derivatives of the potential with respect to the inter- 
bond distances given by 

R;d. = (x, -x,‘)2+ (Yd --y,‘)’ 

+ (zd -zdp)2, d#d’. (26) 
Along the MEP, x = y = 0, therefore, the x block of the 
Hessian matrix can be rewritten as 

F$d:,d = c 
d,,d& ($)Rdd.,Rd.a. I~=,,(sJ' (27) 

F&(s) = - 
~(~)R~~.,R~.~"I.=.,,,' d'Zd' 

(28) 
where d ’ #d and d w # d ‘. The mass-weighted Hessian ma- 
trix KX is then defined by 

K&(s) = p ~~ F:b 0). (29) 
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-!?- (m,R,, + mARcA) m, (mcRcA + mcRBA I2 
mBmA 

II r=a(S) ’ 
(35) 

This can be rearranged to give 

[43s)]2= [dL(s)]2+ z (,,‘M, [-+ (m,R,, + m,R, 1’ 

mA +- 
mcR,c 

&a + “,,,: )2;g)RBA,m] 1 r= .(5) 9 RB** (36) 

where WY(S) is given by Eq. (23) and where we have made 
use of the relationships 

[(E)R,,..R,, = (Z)R,.,. - (~~R.,,R,,. 

x (R&i -R,,. cos @) 

R CA I9 
(d,d’) = (A,C) or (C,A). (37) 

At the saddle point the first derivatives in Eq. (36) vanish; 
therefore, at the saddle point, the bend frequencies comput- 
ed for the bond-length and Cartesian-vibration reaction co- 
ordinates are the same. For arbitrary geometries on the 
MEP, these two derivatives do not necessarily vanish and 
the bend frequencies computed for the bond-length and Car- 
tesian-vibration reaction coordinates are not necessarily the 
same. The connection between Eqs. (14) and (36) will be 
discussed in the next subsection. 

Ill A 3. Least-squares reaction coordinate and 
intrabond angle 

In the previous section it was shown that the combina- 
tion of Cartesian-vibration reaction coordinate and Carte- 
sian bending coordinate leads to a different formal expres- 
sion for the bending frequency than the bond-length reaction 
coordinate with the intrabond angle used for the bending 
coordinate. In the present section we wish to show that using 
different vibrational coordinates with the same reaction co- 
ordinate gives the same frequencies. First we note that using 
the Cartesian-vibration reaction coordinate with Cartesian 
bending coordinates (the Miller-Handy-Adams proce- 
dure) is equivalent to using the least-squares reaction coor- 
dinate with a rectilinear bending coordinate.23 We will show 
below that the least-squares reaction coordinate combined 
with intrabond angle (that was used in Sec. III A 1 with the 
bond-length reaction coordinate) also gives the same fre- 
quencies as the Cartesian-vibration reaction coordinate 
combined with Cartesian bending coordinates. 

The Cartesian-vibration reaction coordinate is defined 
by projecting displacements of the nuclei from the MEP on 
the subspace of displacements satisfying the Eckart-Sayvetz 
conditions.36737 As a result, both the reaction coordinate scv 

and the associated set of Cartesian vibrational coordinates 
Q cv change when the molecular system rotates as a whole 
and hence they are not internal coordinates. [Therefore, any 
true internal variable as well as the potential energy depends 
not only on q I ,...,qF, but also on three additional coordinates 
describing infinitesimal rotations of a structure on the 
MEP.] SinceEqs. (5), (6), (13),and (14) arestrictlyappli- 
cable only for internal variables, the Miller-Handy-Adams 
procedure cannot be used without further assumptions. To 
relate that procedure to the formalism of Sec. II, we make 
use of the fact that the harmonic vibrational frequencies 
evaluated with the Miller-Handy-Adams recipe coincide23 
with those calculated using the least-squares reaction coor- 
dinate. In the least-squares reaction coordinate system, the 
molecular system is rotated to satisfy the Eckart-Sayvetz 
conditions so that sLs is an internal variable by definition. 
The companion set of rectilinear vibrational coordinates qLs 
defined via displacements of the rotated nuclei from the 
MEP are also internal coordinates. [The least-squares reac- 
tion coordinate and rectilinear bend coordinate are defined 
by Eqs. (4)-( 6) in Ref. 39 (with p = 1). The two reaction 
coordinates scv and sLs coincide in configurations in which 
nuclear displacements from the MEP satisfy the Eckart- 
Sayvetz conditions, but they differ from each other every- 
where else. The least-squares stretching coordinate will be 
called q$. ] Since sLs is an internal coordinate, it can be sub- 
stituted for other reaction coordinates (whereas scv can only 
be used together with the Cartesian vibrations). This prop- 
erty will be convenient to derive the expression for the bend- 
ing frequency using the least-squares reaction coordinate 
with the intrabond angle and to show that it is the same as 
that derived in Sec. III A 2. It is worth noting that one would 
also get the same harmonic vibrational frequencies by using 
Basilevsky’s natural reaction coordinates’6’a’ [provided 
that the metric tensor is defined as the inverse of matrix Eq. 
(6)-compare Ref. 16(b) ] because the latter coincide with 
the least-squares variables in the neighborhood of the 
MEP.23 

The least-squares bend frequency in the coordinate sys- 
tem with sLs and the intrabond angle is given by 

[&%)I2 = G~~(s)(~)~~=~l.=.,,‘, (38) 
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where the subscripts on the derivative denote that it is evalu- 
ated at a fixed values of the least-squares reaction coordinate 
SLS at points on the MEP. The G-matrix element is the same 
as that used in section III A 1 [see Eq. (16a)], since it fol- 
lows from the partial derivative relationship between the 
Cartesian coordinates and the vibrational coordinate, @ in 
this case. The second derivative of the potential is expressed 
in terms of the derivative with respect to the bond coordi- 
nates by3’ 

d’#d, (39) 

where F,, (s) is given by Eq. ( 16b) and we have made use of 
the fact that the first derivatives of the bond lengths with 
respect to @, as well as the mixed derivative of the potential 
with respect to <P and one of the bond lengths (at fixed values 
of the two other bond length coordinates) vanish in any lin- 
ear configuration. 

Alternatively, we can represent Eq. (39) by analogy 
with Eq. (14) as 

= F,,(s) - b,, 0) 

where 

+ mc (aRBc) 
7 

(m, -i-m,) \ t3sLs /&Z=O,O=T ’ I 

d’#d, 

mc 
mB+mC q:; = 0.e = r 

4 
On, + m,12 

(42b) 

and”4 

(40) 

(41) 

(42d 

a = [Mm,m,/m, (ms + m,-J2]“4. (43) 

Explicit expressions for the second derivatives of the bond 
lengths R, and R,, with respect to Q, in Eqs. (39) and 
(4 1) will be given below. 

One of the major difficulties in determining the least- 
squares bend frequency in these coordinates is the evaluation 
of derivatives with respect to @ explicitly keeping fixed the 
least-squares reaction coordinate. This can be accomplished 
by the least-squares algorithm23 or through the first-order 
differential equations following from the Eckart-Sayvetz 
conditions.36V37 For a triatomic with a collinear MEP, the 
Sayvetz condition which requires displacements along vibra- 
tional coordinates to be orthogonal to the reaction coordi- 
nate can be written as 

[ ZJ;” - z, (s) ] = 0, (MaI 

where 4” is the projection of nucleus d on the z axis of the 
least-squares body-fixed frame for a displacement from the 
MEP along a vibrational coordinate. For the bending coor- 
dinate, Eq. (44a) is satisfied if 4” does not change from the 
reaction-path value z, (s) for a bending motion, i.e., 

= 0, d = A,B,C. 
p = 9 

(Mb) 

This also implies that the stretching vibrational coordinate 
qf;s remains identically zero for a bend. The Eckart condition 
requires displacements along vibrational coordinates to be 
orthogonal to infinitesimal rotations and for the triatomic 
system consider here, it can be rewritten as 

c mdzd (s)xf;’ = 0, (MC) 
d = A,B.C 

where x>’ is defined in a manner analogous to ~5”. 
The bond lengths are defined in terms of the Cartesian 

variables by Eq. (26) which for bending displacements in 
the x direction can be expressed as 

R;, = (x~~)2 + (42)‘, (Ml 
where xh: = of;” - xks and ~$2 = zf;” - 4’. Using Eq. 
(44b) and the fact that xbz vanishes in any collinear configu- 
ration results in 

(~),,-.I._.,., = [&$zL=.l /r=*cI) 
(44e) 

and it only remains to evaluate the derivative of the Carte- 
sian coordinates xkz with respect to Q. This is accomplished 
using the Eckart condition (44~) and by requiring the center 
of mass to remain stationary during the bending, e.g., Eq. 
(24). 

Differentiation of the Eckart condition (44~) with re- 
spect to Q> leads to one equation for the first derivative of xi’ 
with respect to @ 

d~&-4G3&s=s I r=*(l) = O* 
Using Eq. (24) we can also write this relation as 

(45) 
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A second relationship for axkz/&D can be obtained by dif- 
ferentiating the vector cross product equation 

(R, XRBC),,~~EeA -xk;&%=RBARBC sin @ 
(47) 

with respect to @ and putting Q, = n, to yield 

[%y3i’~rl LCjJ = l* 
Solving Eqs. (46) and (48) we obtain 

W,L* IL, 

[ 
Edmd'zd'~s~RBARBc 

= 

IO (s) II , r=aw 

(48) 

that their injnitesimal deviations for any C,, configuration 
retain the symmetry. The injinitesimal deviations ofsymme- 
try-breaking (SB) coordinates qy may be chosen to span the 
two-dimensional irreducible representations of the C,, 
group. Like the collinear triatomic MEP, the reaction coor- 
dinate for (R3) is a totally symmetric coordinate and, hence, 
the coefficients of momentum coupling between the motion 
along the path and symmetry-breaking vibrations vanish in 
any C,, configuration, i.e., 

II = 0, j = 1,2 ,..., 2N - 4. 
r = n(s) 

(54) 

(d,d’) = L&C) or (CA), (49) 
where 

But we still must enforce G, = 0 for i corresponding to a 
totally symmetric coordinate by the proper choice of these 
coordinates [see Eq. (6) 1. 

EA = 1, EC= -1. (50) 
Use was also made of the relationship for the moment of 
inertia for collinear geometries 

10 = [ mczc (s)RBc - mAzA (SIR, ] jr = a(s), (51) 
which is a result of Eq. (24). 

Combining Eqs. (15), (16), (38), (39), (44e), (49), 
and (5 1) leads to the desired expression for the least-squares 
bending frequency in this coordinate system, 

where 

(d,d’> = (A,C) or (CA). (53) 

For C,, symmetry the GF matrix takes a block diagonal 
form and we can consider separately the subspaces of totally 
symmetric and symmetry-breaking vibrational coordinates. 
In particular, for reaction (R3) we have three totally sym- 
metric vibrational coordinates and four pairs of doubly de- 
generate symmetry-breaking vibrational coordinates. We 
consider two different reaction coordinates which are de- 
fined in exactly the same way in the subspace of C,, configu- 
rations and, as a result, only the harmonic frequencies in the 
symmetry-breaking subspace change with different choices 
of the “totally symmetric” reaction coordinate. Thus, the 
symmetry-breaking subspace is analogous to the bending 
modes of the collinear atom-diatom complexes. Therefore, 
for any new definition of the reaction coordinate, the first 
problem is how to evaluate the second derivatives of the po- 
tential with respect to the symmetry-breaking coordinates 
for fixed values of the selected totally symmetric coordi- 
nates. To evaluate the frequencies, we also need to compute 
the G matrix elements. 

Equation (52) is an alternative expression of Eq. (36) and it 
shows again that by requiring that sLs instead of sBL remains 
fixed during bending displacements, one obtains a different 
bending frequency even though the bending coordinate is the 
same. However, the least-squares bending frequency ob- 
tained in Eq. (52) is identical to that given above in Eq. 
(36). This can be shown by using Eq. ( 37). Thus, the bend- 
ing frequency does not depend on the choice of bending coor- 
dinate, although it does depend on the definition of the reac- 
tion coordinate. 

III B. Reaction CH, + H, + CH, + H along a CT,, reaction 
path 

Two choices of the reaction coordinate are described in 
this section. The first reaction coordinate, which is new and 
is described in Sec. III B 1, involves Cartesian-vibrational 
coordinates defined in the Eckart frame attached to the 
methyl hydrogens. This treatment differs from the treat- 
ments of Refs. 2 1 and 23 by the choice of directions in which 
the system distorts with a constant value of the reaction co- 
ordinate. In the present treatment, the Eckart frame of the 
methyl hydrogens is held fixed when vibrational coordinates 
are varied. Because of the prominent role which totally sym- 
metric Cartesian vibrations measured relative to the Eckart 
frame of the methyl hydrogens play in the resulting transfor- 
mations, the reaction coordinate defined by this transforma- 
tion is called the methyl-Eckart-frame Cartesian-vibration 
(MEF-CV) reaction coordinate. It is denoted S. (In this 
section we reserve s for the reaction coordinate on the MEP 
and in other C,,, geometries, where both definitions agree.) 

Reaction (R3) gives us an example of a polyatomic sys- 
tem for which, due to the C,, symmetry of the MEP, we may 
make interesting analogies to a triatomic reactions with a 
collinear MEP. The reaction coordinate in this case is a func- 
tion of totally symmetric (TS) vibrational coordinates G,F 
(j= 1,2,...,N- 2; where N is the number of atoms) such 

The second treatment is also new and it defines the reac- 
tion coordinate for non-Csv configurations in terms of curvi- 
linear coordinates corresponding to fixing the bond lengths 
of the making and breaking bonds when the system distorts 
with a constant value of the reaction coordinate. This defines 
the bond-length reaction coordinate or sBL. The computa- 
tion of the necessary quantities for the bond-length reaction 
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coordinate in Sec. III B 2 is based on the set of totally sym- 
metric coordinates introduced at the end of Sec. III B 1. The 
main advantage of this set of vibrational variables is that the 
second derivatives of the potential can be easily evaluated in 
this coordinate system. In Sec. III B 2, we the use the chain 
rule to calculate the necessary second derivatives at fixed 
values of the bond lengths R,, and RHw, where H and H ’ 
are the hydrogens forming the hydrogen molecule with H 
taken to be the hydrogen atom furthest from the carbon. The 
second derivatives are calculated with two other totally sym- 
metric coordinates kept fixed, the height of the CH, pyra- 
mid, and the totally symmetric Cartesian-vibrational coor- 
dinate of the isolated CH, radical. 

I// 6 1. Methyl-Eckart-frame Cartesian-vibration 
reectlon coordinate 

In this section we define the reaction coordinate using 
Cartesian coordinates of the three reacting atoms (C, H, and 
H ‘) in a body-fixed frame attached to the methyl hydrogens. 
Although the treatment is applicable to an arbitrary reaction 
of the form CX, + YZ, as long as the MEP has C,, symme- 
try, we use the notation CH,H,H, + HH’ 
+ CH, Hb H, H + H’ for concreteness and to avoid confu- 
sion with theX, Y, and Z Cartesian directions. We place the 
triangle H, HbHc of the CH, pyramid in the XY plane of a 
body-fixed XYZ coordinate frame with the H, Hb H, center- 
of-mass at the origin. We use the Cartesian normal coordi- 
nates Q, , Qzx, and Q2 ,, of the hydrogens in the planar CH, 
molecule to describe vibrations in the triatom, with Q, being 
the CH, breathing mode and with Q2x and Qzy being sym- 
metric with respect to reflections in the XZ and YZ planes, 
respectively. The other vibrational coordinates are taken to 
be the Cartesian coordinates of C, H, and H ‘ in the same 
body-fixed frame; i.e., Xc, Y,-, Z,, X,, Y,, Z,, X,+ , YHe, 
Z,. . The change of variables just described is closely related 
to that suggested by Wallace,40 except that we measure over- 
all rotations and vibrations of the triatom Ho Hb H, relative 
to the Bckart frame,36 whereas according to Wallace’s rec- 
ipe they would be measured relative to the atom-diatom 
body-fixed frame of Curtiss, Hirschfelder, and Adler.4’ 

The space-fixed coordinate vectors of the C, H, and H ’ 
atoms are denoted rd, d = C, H, H’; and ra (a = a,b,c) is 
specifically used when we wish to refer only to the space- 
fixed coordinate vectors of H, (a = a,b,c). The following 
transformation leads from the coordinate system just de- 
scribed to the space-fixed atomic coordinate vectors 

, d= C,f&H (55) 

rcr = rA + s(~,~,‘b) ‘fi + c:Q, + c c:Q2,, , 
K=X.Y 1 

a = a,b,c, (56) 
where rA is the coordinate vector of the center-of-mass of the 
Ho Hb H, triangle, r: is the coordinate vector of a hydrogen 
in the equilibrium configuration of the planar CH, radical 

(with H, on thexaxis), and S<#3,$> is the direction cosine 
matrix of the Eckart frame attached to the triangle H, Hb H, 
and described by three Euler angles 4, 8, and $. The coeffi- 
cients ct in Eq. (56) are given by the relations 

cK _ 1 as,, -- 

= - fi al2 l 4’ 
K=X,Y and a=a,b,c (57) 

CE=$~~, a=a,b,c 
with 

s2, = -+a, +R,,) -kc], 

S,, =A- 

Jz 

U&b - Rx, > , 

(59) 

(60) 

and 

Fz = r~/r&, a = a,b,c, (61) 

where r& and R,,? denote, respectively, the CH bond 
length in the equilibrium configuration of the planar CH, 
radical and the interatomic distance between hydrogens H, 
and H,, in an arbitrary configuration. Substituting Eqs. 
(59) and (60) into (57) and using the relation 

WW* 
a-, T=T@ 

= a,,. i& + s,.,. i;,+ , 

a,a’ = a,b,c 

with 

i;,, E (C -rk>/lr: -r:,I 

a,(x) = a,b,c 

leads to 

Y- 
cb - +:b, 

Taking into account that 

r-1 a = a’, 
F$‘,,, -?& = 

I 
1 -- 
2 

afa’, 

(62) 

(63) 

(64),(65) 

(66),(Q) 

(68),(69) 

(70) 

one can directly verify that the coefficients c,” satisfy the 
Eckart conditions: 

agoc:=o (71) 

i rzXc,K=O (72) 
a=0 

together with the normalizing relation: 
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i c:*c: = 6,?. (73) CGKL CJf,H';K=X,Y,Z~ rox= Q 2x9 'or- = Q2 y, and roz = Q, . 
i=* Differentiating the potential Y with respect to these vibra- 

tional coordinates at fixed values of rd and the Euler angles 
We can now specify the configuration of CH, by.the &19, and $, we obtain three 4 x 4 matrix blocks gx, Fy, and 

following set of twelve Cartesian vibrational coordinates: g” with the elements 

H 

I 
rK,t ‘K t,t ’ = C,H,H’ 

c &,K~H~K,~K, t = C,H,H’;t’ = 0 
3” =% = a’ = a,b,c 

N’ f’f K’=X,Y , (74) 

C c~,,.c,K~.H~‘~‘,~-~” t,t’=O 

1 a’.~’ = a.6.c 
K’,K” =X,Y 

where the elements HdK,d,Ke of the Hessian matrix are the 
second derivatives of the potential Vwith respect to the Car- 
tesian coordinates of the nuclei at the appropriate point of 
the reaction path. The notation HaK,dKe indicates derivatives 
with respect to raK and rdeK, where a = a,b,c refer to atoms 
H,, Hb, H,, and d = C, H, H ‘. Note that the elements of the 
@“matrix with subscript 0 refer to derivative of the potential 
with respect to the vibrational coordinates Qzx, Qz y, and Q, , 
for K = X, Y, Z, respectively. 

To find the G matrix, it is convenient to measure the 
body-fixed projections of the nuclei C, H, and H’ from the 
center of the total nuclear mass. Then 

rcM = rA + S(qVWR, (75) 
with 

and M= m, + 5m,. The transformation Eqs. (55) and 
(56) then takes the form 

rd = rcM + S($,O,$) , d = C,H,H’ (77) 

r, =rCM+ S(qW,$) r: -R+ c$Q, + 1 c,“Q,, , 
[ K=X,Y I 

a = a,b,c. (78) 
The G matrix for the space of all vibrational variables is 

block diagonal with a 4 X 4 block for totally symmetric co- 
ordinates and two 4X4 blocks for symmetry-breaking co- 
ordinates. Furthermore, each block factors into a 3 X 3 block 
and a diagonal element determining the kinetic energy of the 
appropriate vibrational motion in the Ho H,H, triangle. In 
principle, the elements of the G matrix should be found using 
Eq. (6). However, for the present Cartesian-vibrational 
variables defined by means of a body-fixed frame, the resul- 
tant expressions can be much easier obtained by inverting 
the (3N-3) X (3N-3) matrix formed by the coefficients of 

I 

the components of angular velocity vector and velocities of 
vibrational motions in the classical kinetic energy. These co- 
efficients can be easily calculated for the body-fixed frame 
used to define the vibrational coordinates. After the matrix 
formed by these coefficients is inverted, one simply needs to 
select its block describing momentum coupling in the space 
of vibrational motions. For totally symmetric modes, one 
simply needs to invert the 3 x 3 block ‘%‘” with the elements 

-Z T 
m,(M--m,)/M d=d’ 

dd’ = 
mdmdo/M d #d’ 

d,d ’ = C,H,H ‘. - 
(79) 

Since (in contrast to the least-squares set of variables) 
symmetry-breaking nuclear displacements in the body-fixed 
frame in question do not satisfy the Eckart conditions along 
the MEP, velocity coupling between overall rotations and 
symmetry-breaking coordinates should be taken into consi- 
deration. Hence, the matrix of velocity coupling is 5 X 5 with 
a diagonal element for the Qzx or QIy motion and a 4X4 
block which contains the rotational coupling: 

TX=TY=(; ;, ), (80) 

with 
td = - md (Z, -Z), d = C,H,H’ (81) 

and I, used for the moment inertia of the C,, configuration 
in question relative to its symmetry axis. The block of the G 
matrix sought for can be then represented as 

@= GY= (m;’ g,))&l, (82) 

where 0 is the 3 X 1 null matrix, OTis its transpose, and G(‘) is 
formed by the first three rows and columns of the inverse 
matrix of Eq. (80). We calculate the harmonic frequencies 
of symmetry-breaking modes by diagonalizing the symmet- 
ric 4X4 matrix ($)“2$*(@)“2 with FL=FX= F’as de- 
fined in Eq. (74) with K = X or Y. 

We have provided expressions for obtaining the har- 
monic frequencies for the symmetry-breaking vibrations 
without giving the explicit definition of the reaction coordi- 
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nate. We do not need to define these coordinates to obtain 
the MEF-CV vibrational frequencies for the totally sym- 
metric vibrations since the totally symmetric frequencies do 
not change with different choices of totally symmetric reac- 
tion coordinate and they can be computed more easily by the 
Miller-Handy-Adams projection technique. However, we 
will need these coordinates in the next subsection, and so we 
close the present subsection with their definition; we illus- 
trate their use by giving a prescription for using them to 
obtain the frequencies of the totally symmetric vibrations. 

To define the reaction coordinate 5 and the set of totally 
symmetric vibrational coordinates $s ( j = 1,2,3), we intro- 
duce an intermediate set of three mass-scaled Jacobi coordi- 
nates by analogy with the atom-diatom coordinates of Mar- 
cus,’ in particular, 

771 =&-mc, (83) 

7, =&Z[m&h --ZH], (84) 

77, = &Z[ (m&% + mHZH)/m3 - ZHr] (85) 
with 

m, E--m, + mA, m, Em, + mH, m, = 3m, (86) 
and 

pI =mcmA/m2, p2 =mHmZ/m3, p3 =m,m,/M. 
(87) 

The four totally symmetric degrees of freedom are described 
by Eqs. (83)-( 85) and the vibrational coordinate 

70 = I/-Q, - (88) 
The methyl-Eckart-frame Cartesian-vibration reaction co- 
ordinate 5 and three totally symmetric vibrational coordi- 
nates q,” ( j = 1,2,3) are then defined by the implicit rela- 
tions 

vk (%jsT) = do'(~) + i $ycwj,~ k=0123 , , , , (89) 
j= I 

where the coordinates q evaluated on the reaction path are 
defined in terms of the reaction-path coordinates of Eq. (2) 
by 

7f”‘(s) = (m,/p)“2(m, 0 “2a &Y(s) -f&f), (90) 

qlO’(s) = (~,/~)“2(m~“2acz(s) -m~“2a,~z(~)), 
(91) 

vi”(s) = (p2/p)“2[ (mAm; “‘aHuZ(s) 

+ mfc/2acz (s) l/m, - rni 1’2aHz (s) 1, (92) 

do’(s) = (rU3/1UmH)“‘{[mAuH”Z(s) + (mHmC)1’2 

Xa,(s) + m,a,W]/m, -a,.,(s)). (93) 

where p is the reduced mass of Eq. ( 1). Therefore, 

(94) 

Since the MEP is the path of steepest descent in mass-scaled 
Cartesian coordinates, we have 

t$o (g2E 1. (95) 

The coefficients ZITS of the transformation within the totally 
symmetric space of coordinates are defined by 

hk 
q(s) = -, 

aq; 
k = 0,1,2,3; j = 1,2,3 

and are orthogonal to the gradient along the MEP expressed 
in these vibrational coordinates 

3 dr]i” c -EC(S) ~0, (97) 
k=o ds 

j = 1,2,3. 

In addition, since the vibrational coordinates QTs describe 
generalized normal modes, we require that 

[ ; k kio $(s)F;,. wig. (s) 
. ’ 
- u;(s)&. 1 = 0, j = 1,2,3, (98) 
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where the force constant matrix in the vibrational coordi- 
nates r] is defined by 

FZk,(S)= c 
r,f’ = O,C,H,H’,A 

k,k ’ = 0,1,2,3. (99) 
In Eq. (99) we have introduced a new set of coordinates c 
that include four totally symmetric vibrational degrees of 
freedom and overall translation along the C,, symmetry 
axis. These coordinates are given by 

So =,/6&Q, = 70, (100) 
c1 =m(rA +&I, t= C,H,H’ (101) 

CA = JarA (102) 

wherem, =mH, and r, is the space-fixed z coordinate of the 
center-of-mass of the triangle H,H,H, in an arbitrary C,, 
configuration of the whole system. The symmetric matrix of 
second derivatives in these new coordinates is given by 

, 

J 
m,m,e wyll, 

P 
-Z FM* 

c Ht~*,nz 
a’ = o,b.c 

t,t’#A 

t#O,A, t’=A 

= c H,.,,.,cs, t = 0, t’ = A 7 ( lo3) 
a’,~” = a,b.c 

I K=X,Y 

C Ha+z,a~z t=t’=A 
ci,a” = a,b,c 

where gz, H, and cz are defined above. Instead of solving Eq. 
(98) under conditions in Eq. (97)) it is convenient to apply a 
projection technique (which is a modification of that intro- 
duced by Miller, Handy, and Adams2’ ) to the five-dimen- 
sional system described by the mass-scaled Cartesian coordi- 
nates 6. The potential function is invariant under translation 
of only four masses-C,H,H’, and the center-of-mass of the 
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triangle (A); overall translation does not depend on the vi- 
brational motion Q’ (or r], = co ) . As a result, the eigenvec- 
tor of the 5 X 5 matrix WI’ corresponding to the zero eigen- 
value has the form 

e= (0 JS $gm JG-gm J-1. 
(leer) 

Since the coordinates qo, 7’) v2, and 1;1, determine the 4- 
dimensional hyperplane orthogonal to the vector in Eq. 
(104) defined in the space of coordinates in Eqs. (lOO)- 
(102), and since the coefficients ST’ are orthogonal to the 
gradient of the potential [see Eq. (97)], the projector in 
question can be represented as 

d 
p,,, =h - (1 -6,,)(l -6,.o)+!!L 

dc I”’ dc I!‘) 
----TX- 

t,t ’ = O,C,H,H’,A, (105) 

with 

[h”(s) = (mA/p)“2(m;“2uHJ(s) -fcH)) (106) 

<i”(s) =p-“2aIz(s), t = C,H,H’, (107) 

c?(s) = (mA/pmH)“2aHoZ(s)- (108) 
The harmonic frequencies of the totally symmetric normal 
modes calculated in such a way coincide with the harmonic 
frequencies of the nondegenerate normal modes obtained by 
applying the Miller-Handy-Adams technique to the full 18- 
dimensional space of the reaction (R3 ). 

I// 6 2. Bond-length reaction coordinate 
We now introduce a new “bond-length” reaction coor- 

dinate sBL defined as a function of the CH, breathing mode 
Q, and three geometrical vibrational coordinates-the 
height Z, of the CH, pyramid and two bond lengths R,, 
and R nn, -in such a way that sRL coincides with 5 in any C,,, 
configuration. This implies that we first express Z, and Z,. 
in terms of the coordinates Z,.-Z,, Z,,-Z,, and Z,, and 
then substitute Z,.-Z, and Z,-Z, in the resultant expres- 
sion for the bond lengths R,,. and R,,. The new coordi- 
nates vo, 7, , v*, q3, obtained in such a way are connected 
with the new reaction coordinate sRL and the associated to- 
tally symmetric Cartesian-vibrational coordinates qTS, q:“, 
qTS by means of relations in Eq. (89) with saL, qTS used in- 
stead ofi, 4”. Therefore, the harmonic frequencies of totally 
symmetric vibrations calculated with this new definition of 
the reaction coordinate are exactly the same as those calcu- 
lated using the Cartesian-vibration reaction coordinate, e.g., 
by the Miller-Handy-Adams projection technique. The 
choice of the vibrational coordinates does not affect the har- 
monic frequencies so we keep all the symmetry-breaking co- 
ordinates Qrx, Qzr, and X,, Yd (d = C,H,H’) the same be- 
cause they are convenient for calculations of all the 
necessary second derivatives. The immediate consequence of 
such a choice of the vibrational coordinates is that the appro- 
priate block of the G matrix also remains the same. 

To calculate the second derivatives of the potential at 
fixed values of the new totally symmetric vibrational coordi- 

7886 Natanson et a/. : Reaction-path dynamics 

nates, one needs to compute the second derivatives of Z, 
andZ,. withrespect toQ,,, Qzr andX,, Y, (d = C,H,H’) 
at fixed values of Q, , Z,, R,, , and R,,. . One finds 

Z, =Z, -k,/R& - (Xc --x,j2- (Yc - YH)“, 
(109) 

Z,. = Z, + JR &, - (XH -xH’y- (YH - YH’)2 
(110) 

and hence the X and Y blocks of the F matrix in question 
have the following form: 

F&E& -$g, 
R (111) 

H 

1 av 1 av FhHEFhH ------, 
R CH azH R,,+ azHp 

(112) 

FheH’ ~p’,.,p - 13, 
R HH’ dzH’ 

(113) 

F&,&i, +2x, 
RCH azH 

(114) 

FhHb &hH, + --i--x, 
R HH’ azH’ 

(115) 

Fid, =pid,. (116) 
for all other combinations of d and d ’ where F’ = FX = Fy. 
We calculate the new harmonic frequencies of symmetry- 
breaking modes by diagonalizing the symmetric 4 X 4 matrix 
(61) 1/2F1( T;1) ‘/2. 

IV. CALCULATIONS 

Calculations on the H + H, -+H, + H reaction have 
been carried out using the double many-body expansion 
(DMBE) potential of Varandas et aZ.42 for the lowest elec- 
tronically adiabatic state. For the reaction 
O(“I-9 + H, + OH + H, we employ the -‘A II potential of Jo- 
seph and two of the authors denoted J34” and for the reac- 
tion CH, + H, -, CH, + H, we use surface J 3 of Joseph, 
Steckler, and one of the authors.44 

The harmonic frequencies as a function of distance 
along the reaction path were computed as described else- 
where20.26 and above. 

In addition to the harmonic frequencies, we also present 
calculations of thermal rate constants for reactions (Rl)- 
(R3) by improved canonical variational theory20’d’*25’b’.26 
(ICVT). Details of the methods used in the calculations of 
the rates are also provided elsewhere.20.22.25.26.45 Vibrational 
energy levels for reactions (Rl ) and (R2) were computed 
using the Morse I approximation”’ for the stretch and the 
harmonic approximation for the bend. For reaction (R3), 
energy levels for bound vibrations are computed by the 
Morse approximation III. 25(” Rotational partition func- 
tions are computed for the triatomic reactions by the quan- 
tum mechanical rigid rotor approximation and for reaction 
(R3) by the classical approximation. 

Quantum mechanical effects on the reaction coordinate 
motion are included by the small-curvature semiclassical 
adiabatic ground-state (SCSAG) tunneling method.22.2h 
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Tunneling occurs through the vibrationally adiabatic 
ground-state potential energy curve given by 

V,G(s) = v&4,, (s) + et 01, (117) 
where E$ (s) is the total vibrational zero-point energy 
summed over all vibrational modes. The contribution to 
& (s) from modes with imaginary frequencies is taken as 
zero. In the SCSAG method, the effect of reaction path cur- 
vature is included by an effective mass for tunneling which is 
dependent on the reaction coordinate and contains contribu- 
tions from all the vibrational modes treated in the indepen- 
dent-normal-mode approximation. Again we set contribu- 
tions from modes with imaginary frequencies equal to zero. 
Combining the SCSAG transmission coefficient with ICVT 
rate constant yields the final (ICVTBCSAG) rate constant. 

Since the s values given in the figures discussed below 
depend on the value ofy in Eq. ( 1 ), we note that in all cases 
we set this equal to the reduced mass for relative transla- 
tional motion of the reactants. 

V. RESULTS 
A. H+H, +H, +H 

The harmonic bending frequency for reaction (Rl ) as a 
function of the reaction coordinate s is presented in Fig. 3. 
Notice that the frequencies computed using the Cartesian- 
vibration and bond-length reaction coordinates coincide at 

80*c /‘i 
/ I \\ 

the saddle point (s = 0) as they must, but can be significant- 
ly different at other locations along the reaction path. For 
this reaction the potential is qualitatively well described by a 
London equation,46 which predicts a tripletlike repulsion of 
the two end atoms. As pointed out in Sec. III, for this type of 
potential the bond-length reaction coordinate will give har- 
monic bending frequencies which are not imaginary. This is 
seen to be true for this case over a large region of the reaction 
path. The Cartesian-vibration bending frequency is seen to 
be always less than or equal to the bond-length frequency in 
this case. 

Figure 4 shows the effect of the change in the harmonic 
bending frequency on the ground-state adiabatic potential 
curve. The lower adiabatic potential results from the drop in 
the bending frequency in going from the bond-length to the 
Cartesian-vibration reaction coordinate. The Cartesian-vi- 
bration reaction coordinate gives an adiabatic potential bar- 
rier that is thinner and will therefore give rise to enhanced 
tunneling. 

Table I present the results of variational transition state 
theory (VTST) calculations of the rate constants for the two 
choices of reaction coordinate. In both cases, the improved 
canonical variational transition state occurs at the saddle 
point for all temperatures considered. Since the bending fre- 

h 
5 
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8 

x 

27 
iizi 
> 

16 

8 

6 
-2 -1 0 1 2 

s(ao) 

s(ad 
FIG. 3. Harmonic bending frequency for the H + H, reaction on the 
DMBE surface as a function of reaction coordinates for two definitions of 
the reaction coordinate for bent geometries--the bond-length reaction co- 
ordinate (solid line) and the Cartesian-vibration reaction coordinate 
(dashed line). Frequencies plotted in the negative direction correspond to 
negative eigenvalues of the GF matrix and therefore imaginary frequencies. 
Plotting of sign(w* rather that wz gives rise to discontinuities in the 
slopes of w(s) when it passes through zero. 

FIG. 4. Vibrationally adiabatic potential curve for the H + H, reaction on 
the DMBE surface as a function of reaction coordinates for two definitions 
of the reaction coordinate for bent geometries-the bond-length reaction 
coordinate (solid line) and the Cartesian-vibration reaction coordinate 
(dashed line). For each choice of reaction coordinate the potential along 
the reaction path and the zero-point energy for the stretching vibration are 
identical; only the zero-point energy for the doubly-degenerate bending vi- 
brations differs for the two curves. The zero-point energy levels are comput- 
ed by the Morse I approximation for stretches and the harmonic approxi- 
mation for bends. 
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TABLE I. Comparison of rate constants (units of cm’ molecule- ’ s- ‘) for the reaction H + H, using the 
DMBE potential energy surface for computing the bending frequency in bond-length (BL) and Cartesian- 
vibration (CV) reaction coordinates.’ 

T,K 

BL reaction coordinate CV reaction coordinate 

ICVT ICVT/SCSAG ICVT ICVT/SCSAG 

200 2.3X10-" 1.1x10-‘* 2.3~ 1O-2o 5.7x 1o-‘8 
300 3.9x 10-l’ 1.9x lo- I6 3.9x 10-l’ 4.6x10-l6 
4co 1.6x IO- ” 3.7x lo-l5 1.6x lo-” 6.5x 10-l’ 
600 6.8x10-” 9.8x10-l’ 6*8x10-” 1.3x 10-l) 

1000 1.7x10-‘2 1.9x10-‘2 1.7x10-‘* 2.1x10-12 
1500 1.1x10-” 1.1x10-” 1.1x10-” 1.2x10-i’ 
2400 5.8x10-" 6.0x10-" 5.9x10-" 6.1x10-" 

*Rate constants are calculated using the Morse III approximation [Ref. 25 (a) ] for vibrational anharmonicity. 
For this case the Morse III approximation is the same as using Morse I for stretches and harmonic for bends. 

quencies coincide there, the ICVT rate constants are identi- 
cal for the two choices of reaction coordinate. However, 
when tunneling is include,d significant changes are seen. The 
thinner adiabatic barrier for the Cartesian-vibration reac- 
tion coordinate gives an enhancement of over a factor of 5 at 
200 K. We know for H + H, though that calculations based 
on the bond-length reaction coordinate are in excellent 
agreement with accurate quantum mechanics when the an- 
harmonicity is treated as accurately as possible for the 
stretch and bend and the same potential energy surface is 
used for both approximate and accurate calcula- 
tions 20(b),ZO(e)s22 

Thus the use of the Cartesian-vibration reaction coordi- 
nate (or the least-squares coordinate system which gives the 
same frequencies) does not appear to be accurate in this case. 
We attribute this to neglect of bend-stretch interactions, 
which are expected, based on previous work47,48 to be very 
important for Cartesian vibrations but relatively unimpor- 
tant when bends are treated as occurring along curvilinear 
bend coordinates with fixed bond lengths. In particular, our 
previous experience with Cartesian and curvilinear vibra- 
tional coordinates for potential energy surfaces4’ and parti- 
tion functions4’ of bound triatomics showed that when 
mode-mode coupling is neglected, as it is here and as it is 
often required in many other applications for practical rea- 
sons, the curvilinear bend coordinate leads to much better 
results than the Cartesian one. 

6. 0(3P)+H2 +OH+H 
The trends for reaction (R2) are similar to those seen 

for the H + H, reaction. The potential used here for reac- 
tion (R2) describes the bend in terms of a purely repulsive 
anti-Morse function in the distance between the end atoms. 
As a result, the bending frequencies obtained using the bond- 
length reaction coordinate are real over the whole length of 
the reaction path shown in Fig. 5. In contrast, the frequen- 
cies obtained with the Cartesian-vibration reaction coordi- 
nate become imaginary very close to the saddle point: be- 
tween s = - 0.14 and - 0.16 a, on the reactant side and 
between s = 0.22 and 0.24 a, on the product side. 

As for reaction (Rl), the lower frequencies with the 
Cartesian-vibration reaction coordinate lead to a thinner 

ground-state adiabatic barrier as seen in Fig. 6. The figure 
also shows that the adiabatic barrier for the bond-length re- 
action coordinate has a higher barrier which is shifted 
further towards reactants than the barrier for the Cartesian- 
vibration reaction coordinate; For the bond-length reaction 
coordinate, the maximum is 17.12 kcal/mol and it occurs at 
s = - 0.11 a,, whereas for the Cartesian-vibration reaction 
coordinate, the maximum is 16.89 kcal/mol and occurs at 
s= -o.03ao. 

As a result of the different maxima in the adiabatic bar- 
rier, even the ICVT rate constants (neglecting tunneling) 

6o01 

1 I 
200i I 1 

1 

I A 
I /- 

400i - I I I 

1 1 \/ 
1-l 

600i 1 
-1 0 1 

s@b) 
FIG. 5. Same as Fig. I except for the 0 + H, reaction on surface J3 and, 
since some of these frequencies are imaginary, the quantity plotted is 
sign(&) Iw]. Thus, frequencies plotted in the negative direction correspond 
to negative eigenvalues of the GF matrix and are imaginary frequencies. 
Plotting of sign(w’)]ol rather that o* gives rise to discontinuities in the 
slopes of o(s) when it passes through zero. 
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FIG. 6. Same as Fig. 2 except for the 0 + H, reaction on surface 53. 

will differ for the two choice of reaction coordinate in this 
case. This is confirmed in Table II, which shows that using 
the bond-length reaction coordinate yields ICVT rate con- 
stants that are factors of 1.7 to 1.2 lower than those obtained 
using the Cartesian-vibration reaction coordinate over the 
temperature range from 200 to 2400 K. When tunneling is 
included in the ICVT/SCSAG rate constants, the difference 
becomes larger because the thinner barrier of the Cartesian- 
vibration reaction coordinate allows more tunneling. Thus, 
the differences of the ICVT/SCSAG rate constants using the 
Cartesian-vibration reaction coordinates from those calcu- 
lated with the bond-length one are factors 7.4 to 1.3. Again 
the differences are large compared to the known20(e)*49 high 
accuracy attainable with the bond-length reaction coordi- 
nate for this reaction. We conclude that a treatment with the 

Cartesian-vibration reaction coordinate (or the least- 
squares coordinate system) is inaccurate when stretch-bend 
interactions are neglected. 

One aspect of the 0 + H, results is very dramatic and 
deserves special comment. At every point on the collinear 
MEP, if we bend the system with fixed bond lengths the 
energy goes up. Nevertheless, Fig. 5 shows that the bend 
frequency computed with a Cartesian-vibration reaction co- 
ordinate may be imaginary. This is intuitively unphysical. A 
naive interpretation of imaginary-frequency vibrations 
along a reaction path is that the path has bifurcated. This 
temptation is especially tempting for polyatomic systems 
where the multidimensional geometry space is harder to de- 
scribe in simple coordinates or to visualize. But the present 
example in which the collinear MEP clearly does not bifur- 
cate, provides an easily visualized counterexample to the na- 
ive interpretation. A better way to “explain” the imaginary 
frequency is that the Cartesian vibrations, being “mathemat- 
ical” and nonseparable, mix in some of the mode that “physi- 
cally” corresponds to moving downhill along the path; thus, 
the energy goes down along this coordinate [see Eq. ( 14) for 
the way that this gradient along the MEP mixes into the 
vibrational force constants]. A curvilinear bend coordinate, 
such as the one used in defining the bond-length reaction 
coordinate, allows the system to bend without moving 
downhill on the MEP, i.e., it provides a more physical sepa- 
ration of the reaction coordinate from the bends. 

C.CH,+H,-rCH,+H 

Both reaction coordinates of Sec. III B (MEF-CV and 
BL) are defined the same way in the subspace of C,, symme- 
tries, and this algorithm is also identical to that used for the 
least-squares reaction coordinate of Ref. 23. Furthermore, 
as proved in Ref. 23, the use of the least-squares (LS) reac- 
tion coordinate for evaluating harmonic frequencies gives 
exactly the same results (not only for symmetry-breaking 
frequencies, but also for totally symmetric ones) as evaluat- 
ing them by means of the Miller-Handy-Adams projection 
technique2i involving Cartesian vibrations (CV). Thus, 
there are four approaches available and they all give the 
same frequencies for totally symmetric vibrations, but they 
give three different sets of frequencies for symmetry-break- 

TABLE II. Comparison of rate constants (units of cm’ molecule- ’ SK’) for the reaction O(‘P) + H, using 
the 53 potential energy surface for computing the bending frequency in bond-length (BL) and Cartesian- 
vibration (CV) reaction coordinates.” 

BL reaction coordinate 

ICVT ICVT/SCSAG 

CV reaction coordinate 

ICVT ICVTDCSAG 

200 7.0x lo-*’ 1.9xlo-2o 1.2x10-** 1.4x10-19 
300 5.9x10-19 7.3x10-18 8.6x10-19 2.8x10-l’ 
400 5.6x IO- ” 2.3x10-lb 7.6~ 10 ” 6.1x10-I6 
600 6.1x10-” 1.1x10-‘4 7.6x lo- I5 2.0x lo-l4 

loo0 3.3x10-” 4.2~10-‘~ 4.0x 10-l’ 5.9x 10 - I3 
1500 3.2x10-‘* 3.6x IO- I2 3.9x10-‘* 4.6~ lo- I2 
2400 2.4x lo-” 2.5x10-” 3.0x lo- ” 3.2~ lo-” 

‘Rate constants are calculated using the Morse III approximation for vibrational anharmonicity. 
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ing vibrations. We have calculated all three sets, and we will 
label them CV, MEF-CV, and BL. In this section, we com- 
pare the results. First we compare the three sets of frequen- 
cies; then we compare rate constants calculated using the 
three sets of frequencies. 

Of the four doubly-degenerate symmetry-breaking 
modes of the CH, complex, the frequencies of the two low- 
est-energy modes tend to zero in the asymptotic reactant 
region and the frequency of the lowest mode also tends to 
zero in the asymptotic product region. The lowest mode cor- 
responds to a CHH’ bend and thus its frequency tends to 
zero whenever the CH or HH’ distance becomes infinite. The 
second lowest mode corresponds to the bending of the CH 
bond relative to the distance of C to the center-of-mass of the 
Ha Hb H, triangle (denoted a ACH bend) and therefore its 
frequency tends to zero only when the CH bond becomes 
infinite. The other two symmetry-breaking modes corre- 
spond to relative motions of the three Hatoms in the triangle 
with respect to the C atom and therefore their frequencies 
tend to positive values in the asymptotic regions. 

Figure 7 shows that the largest differences between fre- 
quencies for the symmetry-breaking modes computed using 

the different definitions of reaction coordinates occur for 
those modes whose frequencies are heading towards zero. 
Only very small changes in the frequencies are seen for the 
highest two symmetry-breaking modes and even for the sec- 
ond lowest mode in the product channel in which it tends to 
a positive-frequency motion. With the conventional, i.e., 
Cartesian-vibration reaction coordinate, the frequency be- 
comes imaginary for the lowest mode between s = - 1.04 
and - 1.03 a, in the reactant channel and between s = 0.50 
and 0.5 1 a, in the product channel. Going to the intermedi- 
ate methyl-E-ckart-frame Cartesian-vibration reaction coor- 
dinate, the situation becomes worse-the same frequency 
becomes imaginary at SE - 0.47 a, in the reactant channel 
at ~~0.23 a, in the product channel. Although the lowest 
mode is the only one with imaginary frequencies for the Car- 
tesian-vibration reaction coordinate, for the intermediate 
methyl-Eckart-frame Cartesian-vibration reaction coordi- 
nate, the second lowest frequency also becomes imaginary 
nears z - 1.06 a,. For the bond-length reaction coordinate, 
all the frequencies remain real over the whole range of reac- 
tion coordinate that was studied (S = - 1.5 to 1.5 a, ). 

The vibrationally adiabatic ground-state potential curve 
shown in Fig. 8 reflects these differences in frequencies for 
the difference choices of reaction coordinate. As in the two 
triatomic reactions, the bond-length reaction coordinate 
gives the thickest adiabatic barrier and the largest maxi- 
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FIG. 7. Harmonic frequency (with the convention of Figs. 3 and 5 for 
imaginary frequencies) of the symmetry-breaking vibrations for the 
CH, + H, reaction on surface J3 as a function of reaction coordinates for 
three definitions of the reaction coordinate for nonsymmetric geometries- 
the bond length reaction coordinate (solid curves labeled BL), the methyl- 
Eckart-frame Cartesian-vibration reaction coordinate (short-dashed 
curves labeled RI), and the Cartesian-vibration reaction coordinate (long- 
dashed curves labeled LS). Four sets for frequencies are presented for the 
four doubly-degenerate symmetry-breaking modes. Note the break in the 
frequency scale at 1600 cm - ’ which resumes at 2900 cm - ‘. 

““r-----I 

s(ao) 
FIG. 8. Vibrationally adiabatic potential curve for the CH, + H, reaction 
on surface J3 as a function of reaction coordinates for three definitions of 
the reaction coordinate for nonsymmetric geometries-the fixed-bond 
length reaction coordinate (solid curves), the MEF-CV reaction coordi- 
nate (short-dashed curves), and the CV (least-squares) reaction coordi- 
nate (long-dashed curves). For each choice of reaction coordinate the po- 
tential along the reaction path and the zero-point energy for the totally 
symmetric vibrations are identical; only the zero-point energy for the dou- 
bly-degenerate symmetry-breaking vibrations differ for the two curves. The 
zero-point energy levels are computed by the Morse III approximation, 
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TABLEIII. Rateconstants (cm3 molecule- ’ s-l) forthereactionCH, + H, -CH, + HusingtheJ3 poten- 
tial energy surface with three methods to obtain the generalized-normal-mode vibrational frequencies.” 

cv MEF-CV BL 

T(K) ICVT ICVT/SCSAG ICVT ICVT/SCSAG ICVT ICVT/SCAG 

200 9.2X lo-” 4.0x 1o-22 1.1x10-~’ 1.5x 10-r’ 6.1~10-“~ 3.4x10-2’ 
300 1.3x1o-‘0 1.5x10-19 1.4x lo-r0 3.7x10-19 1.0x10-20 4.9 x 10 - 2o 
400 1.5x10-u 55x10-‘5 1.6x lo- ‘* 9.6x lo- ” 1.2x lo-‘* 2.9x10-” 
600 1.7x10-‘6 3.1 x lo- I6 l.sXlo-‘~ 3.9x10-I6 1.6x lo-l6 2.3X IO-l6 

loo0 LOX lo- ” 1.2x10-” 9.7x lo-l5 1.1x10-‘4 
1500 1.1x10-‘3 1.2x10-” 

Lox~o- ” 1.3x:0-‘4 
9.9x10-” 1.1x10-” 

2400 1.0x lo- I2 1.0x10-‘* lJ b 8.1x1O-‘3 8.3X10-” 

*Rate constants are calculated using the Morse III approximation for vibrational anharmonicity in all cases. 
b Rate constants were not calculated for these temperatures because the ICVT bottleneck is calculated to be in 

the region where the lowest frequency is imaginary. 

mum. This leads to the lowest rate constants. The rate con- 
stants displayed in Table III show differences of over an 
order of magnitude at 200 K when the values for various 
definitions of the reaction coordinate are compared. The dif- 
ferences become smaller at higher temperatures-a factor of 
1.2 at 2400 K. 

Since our potential surface calibration‘@’ for reaction 
(R3) was based on calculations employing the Cartesian- 
vibration reaction coordinate and since the rate constant at 
Tz600 K played an important role in the calibration, it is 
very significant that the calculated rate constant at 600 K is 
lowered by a factor of 0.7 when the bond-length reaction 
coordinate is used. The bond-length reaction coordinate is 
more realistic when mode-mode coupling is neglected (as it 
was in the previous work” and also here). A factor of 0.7 at 
600 K is approximately equivalent to a 0.4 kcal/mol change 
in barrier height and it means that barrier heights inferred on 
the basis of comparing the previously calculated rate con- 
stants” to experiment may be about 0.4 kcal/mol too high. 
Thus, the effects discussed in this paper may be very signifi- 
cant for modeling efforts. 

VI. SUMMARY AND CONCLUSIONS 

We have shown that, even if the vibrational coordinates 
intersect the reaction path orthogonally, the harmonic reac- 
tion-path frequencies depend on the definition of the reac- 
tion coordinate s for configurations which do not lie on the 
MEP, but they are independent of the choice of the vibra- 
tional coordinates q for the given s.‘~ The present paper il- 
lustrates this dependence for three reactions. 

As a first example, we considered atom-diatom reac- 
tions with collinear minimum-energy paths and we showed 
how two different definitions of the reaction coordinate for 
nonlinear geometries give different bend frequencies. The 
two reaction coordinates considered are the Cartesian-vibra- 

tion reaction coordinate (which for these reactions yields 
results equivalent to using either of two formalisms present- 
ed previously, namely the Miller-Handy-Adams projection 
technique2’*26 or the “least-squares” reaction coordinate23 ) 
and the bond-length reaction coordinate, which has also 
been used previously.*’ We also show that the use of the 
bond-length reaction coordinate will always give real values 
for the bending frequency when the fixed-bond-lengths bend 
potential is purely repulsive. As an illustration, this analysis 
was applied to the reactions H + H, and 0 + H, . 

As a final example we considered the reaction 
CH, + H, using two new coordinate systems for CX, YZ 
presented here. In one new coordinate system for reaction 
path dynamics of the polyatomic reaction 
CX, + YZ-+CX, Y + Z, the reaction coordinate is as- 
sumed constant using curvilinear vibrational coordinates 
corresponding to CX, Y deformations with fixed bond 
lengths. For CX, + YZ reactions, both new reaction co- 
ordinates lead to different results than the conventional Car- 
tesian-vibration treatment. 

The results of this article show that there is significant 
difference between the harmonic frequencies along the reac- 
tion path when different reaction coordinates are used. 
Thus, the conceptually appealing model of dynamics based 
on a harmonic reaction-path potential, which is very con- 
venient for many purposes, should always be interpreted 
with a cautious regard for the nonuniqueness of the harmon- 
ic Hamiltonian and a consideration of whether this affects 
the dynamical conclusions. As one striking example, we 
have shown that an imaginary generalized normal mode fre- 
quency does not necessarily signal a bifurcation of the reac- 
tion path. In the case treated here, the reaction coordinates 
defined in terms of bond lengths give the most physical re- 
sults. Further exploration of the effect of reaction coordinate 
choice on harmonic reaction path potentials, as well as the 
treatment of anharmonicity and vibration-rotation cou- 
pling, would be very interesting. 

. 
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