Ball Milling Method

Physically grind micron size feedstock down to the nanoscale regime using planetary ball milling with WC balls

Particles are coated with various ligands/capping agents to promote suspension in a variety of fuels and/or to protect them from unwanted oxidation

Particle Characterization

Chemical composition: XPS, FTIR, TGA Particle Size: DLS, SEM, TEM

Retsch PM400 ball mill

~50 nm particles separated by settling big particles

SEM image of <100 nm particles

Boron Nanoparticle Size distribution

Unoxidized Boron Nanoparticles

- Elemental B1s peak observed at ~188 eV, B³⁺ at ~193 eV
- Nanosized boron immediately formed oxide upon exposure to air as the XPS samples were prepared.
- Oleic acid prevented oxidation of the fresh boron surfaces formed during the milling process.

Catalyst Coated, Unoxidized Boron Nanoparticles

в°

50 nm

EDX atomic composition							
element	area A		area B		area C		
	atomic %	weight %	atomic %	weight %	atomic %	weigh %	
В	27.8	23.0	30.4	26.1	37.4	33.0	
Ce	0.2	1.8	0.2	2.1	0.0	0.3	
0	4.8	5.8	2.5	3.2	1.1	1.5	
С	65.4	60.3	65.7	62.7	60.2	59.0	
0	1.0	0.0	1.2	5.0	1.2	6.2	

CeO₂ exists as patch of island on a boron nanoparticle

XPS suggests the presence of a low binding energy boride species (Ce_xB_y)

Boron Nanoparticles with Polar Surfactants

Boron Powder + ¹/₈" WC balls 80:1 BPR

 + Surfactant (Ionic Liquid, Et₂NH, Et₃N, Ethanolamine)
~10 % total volume

+ Solvent (Ethanol)

Samples washed with EtOH to remove excess surfactant

www.retsch.com

4 x 250 ml capacity

Method of Preparation: Ball Milling

Boron in EtOH

Wet Milled Boron in EtOH

Solubility /Dispersibility in Ethanol (polar solvent)

Et₂NH

Characterize size of particles using: SEM, DLS

Et3N

B-Ionic Liquid

Characterize chemical composition using: EDX-STEM, XPS, FTIR

Boron-Ionic Liquid Particle Size

SEM Image of Boron Nanoparticles on TEM Grid

DLS Measurement of Particle Size

Boron, Nitrogen Species

N1s Region XPS of Boron milled with Ionic Liquid

391

Boron, Nitrogen Species

Diethylamine Surfactants

XPS

B1s Region XPS of Boron milled with Et₂NH in EtOH

N1s Region XPS of Boron milled with Et₂NH in EtOH

Triethylamine Surfactants

XPS

B1s Region XPS of Boron milled with Et₃N in EtOH

 ${\bf N1s}$ Region XPS of Boron milled with ${\rm Et_3N}$ in EtOH

Combustion testing in a turbulent flame calorimeter

~3% Boron Loaded Ethanol vs. Pure Ethanol

Boron nanoparticles functionalized with ionic liquid

Dynamic Light Scattering (DLS) of particles suspended in EtOH

Acknowledgment

University of Utah Chemistry Department Prof. Scott L. Anderson

Anderson group:

uerson group.	
William Kunkel	Matt Kane
David Bell	Sloan Roberts
Eric Baxter	Mark Wirth
Darby Lewis	Ashley Becksted
Dr. Dae Jung Kim	Sebastian Proch

Our collaborators: Tommy Hawkins Steven Son Robin Rodgers Michael Berman Stefan Schneider Jerry Boatz Anderson Group 200

Support: Air Force Office of Scientific Research Grant FA9550-08-1-0400